Dimension of weakly expanding points for quadratic maps
[Dimension des points faiblement dilatants pour l'application quadratique]
Senti, Samuel
Bulletin de la Société Mathématique de France, Tome 131 (2003), p. 399-420 / Harvested from Numdam

Pour l’application quadratique réelle P a (x)=x 2 +a et un ϵ>0 donné, un point x a de bonnes propriétés de dilatation si tout intervale contenant x contient également un voisinage J de x avec P a n | J univalent, avec distortion bornée et B(0,ϵ)P a n (J) pour un n. L’ensemble ϵ-faiblement dilatant est l’ensemble des points qui n’ont pas de bonnes propriétes de dilatation. Notons α le point fixe négatif et M le temps de premier retour de l’orbite critique dans [α,-α]. Nous prouvons l’existence d’un ensemble de paramètres de mesure de Lebesgue positive pour lesquels la dimension de Hausdorff de l’ensemble ϵ-faiblement dilatant est bornée supérieurement et inférieurement par log 2 M/M+𝒪(log 2 log 2 M/M) si ϵ est proche de |α|. Pour ϵ|α| quelconque la dimension est de l’ordre de 𝒪(log 2 |log 2 ϵ|/|log 2 ϵ|). Les constantes ne dependent que de M. Le théorème du Folklore implique alors l’existence d’une mesure de probabilité absolument continue et invariante par P a pour a (théorème de Jakobson).

For the real quadratic map P a (x)=x 2 +a and a given ϵ>0 a point x has good expansion properties if any interval containing x also contains a neighborhood J of x with P a n | J univalent, with bounded distortion and B(0,ϵ)P a n (J) for some n. The ϵ-weakly expanding set is the set of points which do not have good expansion properties. Let α denote the negative fixed point and M the first return time of the critical orbit to [α,-α]. We show there is a set of parameters with positive Lebesgue measure for which the Hausdorff dimension of the ϵ-weakly expanding set is bounded above and below by log 2 M/M+𝒪(log 2 log 2 M/M) for ϵ close to |α|. For arbitrary ϵ|α| the dimension is of the order of 𝒪(log 2 |log 2 ϵ|/|log 2 ϵ|). Constants depend only on M. The Folklore Theorem then implies the existence of an absolutely continuous invariant probability measure for P a with a (Jakobson’s Theorem).

Publié le : 2003-01-01
DOI : https://doi.org/10.24033/bsmf.2448
Classification:  37E05,  37D25,  37D45,  37C45
Mots clés: application quadratique, théorème de Jakobson, dimension de Hausdorff, partition de Markov, application de Bernoulli, expansion induite, mesure de probabilité invariante absolument continue
@article{BSMF_2003__131_3_399_0,
     author = {Senti, Samuel},
     title = {Dimension of weakly expanding points for quadratic maps},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     volume = {131},
     year = {2003},
     pages = {399-420},
     doi = {10.24033/bsmf.2448},
     mrnumber = {2017145},
     zbl = {1071.37028},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BSMF_2003__131_3_399_0}
}
Senti, Samuel. Dimension of weakly expanding points for quadratic maps. Bulletin de la Société Mathématique de France, Tome 131 (2003) pp. 399-420. doi : 10.24033/bsmf.2448. http://gdmltest.u-ga.fr/item/BSMF_2003__131_3_399_0/

[1] A. Avila, M. Lyubich & W. De Melo - « Regular or stochastic dynamics in real analytic families of unimodal maps », Preprint, 2001. | Zbl 1050.37018

[2] A. Avila & C. Moreira - « Statistical properties of unimodal maps: smooth families with negative Schwarzian derivative », Geometric Methods in Dynamics (I) (W. de Melo, M. Viana & J.-C. Yoccoz, éds.), Astérisque, vol. 286, Soc. Math. France, Paris, 2003, p. 81-118. | MR 2052298 | Zbl 1046.37021

[3] -, « Statistical properties of unimodal maps: the quadratic family », to appear in Ann. of Math., 2003. | Zbl 1078.37029

[4] M. Benedicks & L. Carleson - « On iterations of 1-ax 2 on (-1,1) », 122 (1985), no. 1, p. 1-25. | MR 799250 | Zbl 0597.58016

[5] -, « The dynamics of the Hénon map », 133 (1991), no. 1, p. 73-169. | MR 1087346 | Zbl 0724.58042

[6] R. Bowen - Equilibrium states, vol. 470, Springer Verlag, 1975. | MR 442989 | Zbl 0308.28010

[7] K. Falconer - Fractal Geometry; Mathematical Foundations and Applications, John Wiley, 1990. | MR 1102677 | Zbl 0871.28009

[8] J. Graczyk & G. Świątek - « Generic hyperbolicity in the logistic family », 146 (1997), no. 1, p. 1-52. | MR 1469316 | Zbl 0936.37015

[9] M. V. Jakobson - « Absolutely continuous invariant measures for one-parameter families of one-dimensional maps », 81 (1981), no. 1, p. 39-88. | MR 630331 | Zbl 0497.58017

[10] S. Luzzatto - « Bounded recurrence of critical points and Jakobson's theorem », The Mandelbrot set, theme and variations, Cambridge Univ. Press, Cambridge, 2000, p. 173-210. | MR 1765089 | Zbl 1062.37027

[11] M. Lyubich - « Dynamics of quadratic polynomials. I, II », 178 (1997), no. 2, p. 185-247, 247-297. | MR 1459261 | Zbl 0908.58053

[12] W. De Melo & S. Van Strien - One-dimensional dynamics, Springer-Verlag, Berlin, 1993. | MR 1239171 | Zbl 0791.58003

[13] A. Rényi - « Representations for real numbers and their ergodic properties », Acta Math. Acad. Sci. Hungar 8 (1957), p. 477-493. | MR 97374 | Zbl 0079.08901

[14] M. R. Rychlik - « Another proof of Jakobson's theorem and related results », 8 (1988), no. 1, p. 93-109. | MR 939063 | Zbl 0671.58019

[15] S. Senti - « Dimension de Hausdorff de l'ensemble exceptionnel dans le théorème de Jakobson », Thèse, Université de Paris-Sud, 2000, available at http://www.math.psu.edu/senti.

[16] M. Tsujii - « A proof of Benedicks-Carleson-Jacobson theorem », 16 (1993), no. 2, p. 295-310. | MR 1247654 | Zbl 0801.58027

[17] J.-C. Yoccoz - « Jakobson's Theorem », Manuscript of Course at Collège de France, 1997.