Poids des duaux des codes BCH de distance prescrite 2 a +1 et sommes exponentielles
Férard, Éric
Bulletin de la Société Mathématique de France, Tome 130 (2002), p. 211-231 / Harvested from Numdam

Soit n un entier pair. On considère un code BCH binaire C n de longueur 2 n -1 et de distance prescrite 2 a +1 avec a3. Le poids d’un mot non nul du dual de C n peut s’exprimer en fonction d’une somme exponentielle. Nous montrerons que cette somme n’atteint pas la borne de Weil et nous proposerons une amélioration de celle-ci. En conséquence, nous obtiendrons une amélioration de la borne de Carlitz-Uchiyama sur le poids des mots du dual de C n .

Let n be an even integer. We consider a binary BCH code C n of length 2 n -1 and designed distance 2 a +1 with a3. The weight of a nonzero codeword of the dual of C n is linked to the value of an exponential sum. We will show that this exponential sum does not reach the Weil bound and we will improve this bound. Thus, we obtain an improvement of the Carlitz-Uchiyama bound on the weights of the words of the dual of C n .

Publié le : 2002-01-01
DOI : https://doi.org/10.24033/bsmf.2418
Classification:  11T23,  94B15
Mots clés: codes BCH, borne de Carlitz-Uchiyama, sommes exponentielles, borne de Weil
@article{BSMF_2002__130_2_211_0,
     author = {F\'erard, \'Eric},
     title = {Poids des duaux des codes BCH de distance prescrite $2^a+1$ et sommes exponentielles},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     volume = {130},
     year = {2002},
     pages = {211-231},
     doi = {10.24033/bsmf.2418},
     mrnumber = {1924541},
     zbl = {1028.11074},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/BSMF_2002__130_2_211_0}
}
Férard, Éric. Poids des duaux des codes BCH de distance prescrite $2^a+1$ et sommes exponentielles. Bulletin de la Société Mathématique de France, Tome 130 (2002) pp. 211-231. doi : 10.24033/bsmf.2418. http://gdmltest.u-ga.fr/item/BSMF_2002__130_2_211_0/

[1] J. Ax - « Zeroes of polynomials over finite fields », Amer. J. Math. 86 (1964), p. 255-261. | MR 160775 | Zbl 0121.02003

[2] L. A. Bassalygo & V. A. Zinoviev - « Polynomials of a special form over a finite field with a maximum modulus of a trigonometric sum », Uspekhi Mat. Nauk 52 (1997), no. 2 (314), p. 31-44. | MR 1480135 | Zbl 0928.11052

[3] E. R. Berlekamp - Algebraic coding theory, McGraw-Hill Book Co., New York, 1968. | MR 238597 | Zbl 0988.94521

[4] G. Van Der Geer & M. Van Der Vlugt - « Reed-Muller codes and supersingular curves. I », Compositio Math. 84 (1992), no. 3, p. 333-367. | Numdam | MR 1189892 | Zbl 0804.14014

[5] N. Koblitz - p-adic numbers, p-adic analysis, and zeta-functions, second éd., Springer-Verlag, New York, 1984. | MR 754003 | Zbl 0364.12015

[6] K.-Z. Li & F. Oort - Moduli of supersingular abelian varieties, Springer-Verlag, Berlin, 1998. | MR 1611305 | Zbl 0920.14021

[7] S. Litsyn, C. J. Moreno & O. Moreno - « Divisibility properties and new bounds for cyclic codes and exponential sums in one and several variables », Appl. Algebra Engrg. Comm. Comput. 5 (1994), no. 2, p. 105-116. | MR 1264460 | Zbl 0809.11080

[8] O. Moreno & C. J. Moreno - « The MacWilliams-Sloane conjecture on the tightness of the Carlitz-Uchiyama bound and the weights of duals of BCH codes », IEEE Trans. Inform. Theory 40 (1994), no. 6, p. 1894-1907. | MR 1322391 | Zbl 0828.94018

[9] F. Rodier - « Minoration de certaines sommes exponentielles binaires », Coding theory and algebraic geometry (Luminy, 1991), Springer, Berlin, 1992, p. 199-209. | MR 1186426 | Zbl 0763.11047

[10] M. Rosen - « The asymptotic behavior of the class group of a function field over a finite field », Arch. Math. (Basel) 24 (1973), p. 287-296. | MR 325576 | Zbl 0264.12003

[11] J.-P. Serre - « Local class field theory », Algebraic Number Theory, Proc. Instructional Conf., Brighton, 1965, Thompson, Washington, D.C., 1967, p. 128-161. | MR 220701

[12] D. Shanks - Solved and unsolved problems in number theory, third éd., Chelsea Publishing Co., New York, 1985. | MR 798284 | Zbl 0397.10001

[13] S. A. Stepanov - « Lower bounds on character sums over finite fields », Discrete. Math. Appl 2 (1992), no. 5, p. 523-532. | MR 1134283 | Zbl 0787.11048

[14] J. Tate - « Endomorphisms of abelian varieties over finite fields », Invent. Math. 2 (1966), p. 134-144. | MR 206004 | Zbl 0147.20303

[15] -, « Classes d'isogénie des variétés abéliennes sur un corps fini (d'après T.Honda) », Séminaire Bourbaki, Lecture Notes in Math., Springer-Verlag, 1968/1969, exposé no 352. | Numdam | Zbl 0212.25702

[16] M. Van Der Vlugt - « Hasse-Davenport curves, Gauss sums, and weight distributions of irreducible cyclic codes », J. Number Theory 55 (1995), no. 2, p. 145-159. | MR 1366566 | Zbl 0840.94021

[17] W. C. Waterhouse - « Abelian varieties over finite fields », Ann. Sci. École Norm. Sup. 2 (1969), no. 4, p. 521-560. | Numdam | MR 265369 | Zbl 0188.53001

[18] J. Wolfmann - « The number of points on certain algebraic curves over finite fields », Comm. Algebra 17 (1989), no. 8, p. 2055-2060. | MR 1013482 | Zbl 0699.14027

[19] C. Xing - « The characteristic polynomials of abelian varieties of dimensions three and four over finite fields », Sci. China Ser. A 37 (1994), no. 2, p. 147-150. | MR 1275799 | Zbl 0811.14041