Nous montrons que les variétés de Kummer de dimension et de dimension algébrique sont de dimension de Kodaira nulle.
We prove that Kummer threefolds with algebraic dimension have Kodaira dimension 0.
@article{BSMF_2001__129_3_357_0, author = {Campana, Fr\'ed\'eric and Peternell, Thomas}, title = {Appendix to the article of T.~Peternell: the Kodaira dimension of Kummer threefolds}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, volume = {129}, year = {2001}, pages = {357-359}, doi = {10.24033/bsmf.2401}, mrnumber = {1881200}, zbl = {1001.32009}, language = {en}, url = {http://dml.mathdoc.fr/item/BSMF_2001__129_3_357_0} }
Campana, Frédéric; Peternell, Thomas. Appendix to the article of T. Peternell: the Kodaira dimension of Kummer threefolds. Bulletin de la Société Mathématique de France, Tome 129 (2001) pp. 357-359. doi : 10.24033/bsmf.2401. http://gdmltest.u-ga.fr/item/BSMF_2001__129_3_357_0/
[1] Algebraic methods in the global theory of complex spaces, Wiley, 1976. | MR 463470 | Zbl 0334.32001
& -[2] « Contributions to Riemann-Roch on projective 3-folds with only canonical singularities », Proc. Symp. Pure Math., vol. 46, 1987, p. 221-231. | MR 927958 | Zbl 0662.14026
-[3] Y. Kawamata., K. Matsuda & K. Matsuki - « Introduction to the minimal model problem », Adv. Stud. Pure Math., vol. 10, 1987, p. 283-360. | MR 946243 | Zbl 0672.14006
[4] « The Chern classes and Kodaira dimension of a minimal variety », Adv. Stud. Pure Math., vol. 10, 1987, p. 449-476. | MR 946247 | Zbl 0648.14006
-[5] « Minimal varieties with trivial canonical class, I », Math. Z. 217 (1994), p. 377-407. | MR 1306667 | Zbl 0815.14009
-[6] « Young person's guide to canonical singularities, Part 1 », Proc. Symp. Pure Math., vol. 46, 1987, p. 345-414. | MR 927963 | Zbl 0634.14003
-[7] Classification theory of algebraic varieties and compact complex spaces, Lecture Notes in Math., vol. 439, Springer, 1975. | MR 506253 | Zbl 0299.14007
-