@article{BSMF_1999__127_3_363_0, author = {Beffa, Gloria Mar\'\i }, title = {The theory of differential invariants and KDV hamiltonian evolutions}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, volume = {127}, year = {1999}, pages = {363-391}, doi = {10.24033/bsmf.2353}, mrnumber = {2001m:37142}, zbl = {01357366}, language = {en}, url = {http://dml.mathdoc.fr/item/BSMF_1999__127_3_363_0} }
Beffa, Gloria Marí. The theory of differential invariants and KDV hamiltonian evolutions. Bulletin de la Société Mathématique de France, Tome 127 (1999) pp. 363-391. doi : 10.24033/bsmf.2353. http://gdmltest.u-ga.fr/item/BSMF_1999__127_3_363_0/
[1] On a trace functional for formal pseudo-differential operators and the symplectic structure of the KdV, Inventiones Math., t. 50, 1979, p. 219-48. | MR 80i:58026 | Zbl 0393.35058
. -[2] Lie algebras and equations of KdV type, J. Soviet Math., t. 30, 1985, p. 1975-2036. | Zbl 0578.58040
, . -[3] A family of Hamiltonian structures connected with integrable nonlinear differential equations. - I.M. Gel'fand collected papers I, Springer-Verlag, New York, 1987.
, . -[4] Invariant differential equations and the Adler-Gel'fand-Dikii bracket, J. Math. Physics, to appear.
, , . -[5] Ordinary Differential Equations. - Longmans Green, London, 1926. | JFM 53.0399.07
. -[6] Modifying Lax equations and the second Hamiltonian structure, Inventiones Math., t. 62, 1981, p. 403-36. | MR 84m:58055 | Zbl 0464.35024
, . -[7] SL(n + 1)-invariant equations which reduce to equations of Korteweg-de Vries type, Proc. Royal Soc. Edinburgh, t. 115A, 1990, p. 367-81. | MR 91i:58063 | Zbl 0724.35095
. -[8] Differential Invariants for parametrized projective surfaces, Comm. in Analysis and Geom., to appear. | Zbl 0949.53012
, . -[9] Applications of Lie Groups to Differential Equations. - Springer-Verlag, New York, 1993. | MR 94g:58260 | Zbl 0785.58003
. -[10] Equivalence, Invariants, and Symmetry. - Cambridge University Press, Cambridge, 1995. | MR 96i:58005 | Zbl 0837.58001
. -[11] Differential invariant signatures and flows in computer vision : a symmetry group approach, Geometry-Driven Diffusion in Computer Vision. - B.M. ter Haar Romeny, ed., Kluwer Acad. Publ., Dordrecht, The Netherlands, 1994.
, , . -[12] Symplectic leaves of the Gelfand-Dikii brackets and homotopy classes of nondegenerate curves, Funct. Anal. Appl., t. 24, 1990, p. 38-47. | Zbl 0723.58021
, . -[13] Projective differential geometry of curves and ruled surfaces. - B.G. Teubner, Leipzig, 1906. | JFM 37.0620.02
. -[14] On the antiplectic pair connected with the Adler-Gel'fand-Dikii bracket, Nonlinearity, t. 50, 1992, p. 109-31. | MR 93b:58083 | Zbl 0761.58023
. -[15] On the Adler-Gel'fand-Dikii bracket, Hamiltonian systems, transformation groups and spectral transform methods. - Proc. CRM Workshop, eds : Harnad and Marsden, 1989. | Zbl 0737.35111
. -[16] On antiplectic pairs in the Hamiltonian formalism of evolution equations, Quart. J. Math. Oxford, t. 42, 1991, p. 227-256. | MR 92j:58054 | Zbl 0755.58030
. -