Tempered subgroups and representations with minimal decay of matrix coefficients
Oh, Hee
Bulletin de la Société Mathématique de France, Tome 126 (1998), p. 355-380 / Harvested from Numdam
@article{BSMF_1998__126_3_355_0,
     author = {Oh, Hee},
     title = {Tempered subgroups and representations with minimal decay of matrix coefficients},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     volume = {126},
     year = {1998},
     pages = {355-380},
     doi = {10.24033/bsmf.2329},
     mrnumber = {2000b:22015},
     zbl = {0917.22008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BSMF_1998__126_3_355_0}
}
Oh, Hee. Tempered subgroups and representations with minimal decay of matrix coefficients. Bulletin de la Société Mathématique de France, Tome 126 (1998) pp. 355-380. doi : 10.24033/bsmf.2329. http://gdmltest.u-ga.fr/item/BSMF_1998__126_3_355_0/

[1] Borel (A.), Tits (J.). - Groupes réductifs, Publ. Math. IHES, 27, 1965, p. 55-151. | Numdam | MR 34 #7527 | Zbl 0145.17402

[2] Bourbaki (N.). - Groupes et Algèbres de Lie, Chap. IV-VI. - Hermann, Paris, 1968. | Zbl 0186.33001 | Zbl 0483.22001

[3] Howe (R.E.). - On a notion of rank for unitary representations of the classical groups, Harmonic analysis and group representations II Circlo, Palazzone della Scuola normale superiore, CIME, 1980, p. 223-331. | MR 86j:22016

[4] Howe (R.E.), Tan (E.C.). - Non-Abelian Harmonic Analysis. - Springer-Verlag, 1992. | MR 93f:22009 | Zbl 0768.43001

[5] Knapp (A.W.). - Representation theory of Semisimple groups - An overview based on examples. - Princeton University Press, 1986. | Zbl 0604.22001

[6] Kobayashi (T.). - Discontinuous groups and Clifford-Klein forms of pseudo-Riemannian homogeneous manifolds, in Lecture Notes of the European School on Group theory, Perspectives in Math., Algebraic and Analytic methods in Representation theory, ed. B. Ørsted and H. Schlichtkrull, t. 17, 1996, p. 99-165. | MR 97g:53061 | Zbl 0899.43005

[7] Li (J-S.). - The minimal decay of matrix coefficients for classical groups, Math. Appl. (Harmonic Analysis in China), t. 327, 1996, p. 146-169. | MR 98d:22009 | Zbl 0844.22021

[8] Li (J-S.), Zhu (C-B.). - On the decay of matrix coefficients for exceptional groups, Math. Ann., t. 305, 1996, p. 249-270. | MR 97f:22029 | Zbl 0854.22023

[9] Lipsman (R.L.), Wolf (J.A.). - Canonical semi-invariants and the Plancherel formula for parabolic groups, Trans. AMS, t. 269, 1982, p. 111-131. | MR 83k:22026 | Zbl 0488.22024

[10] Margulis (G.A.). - Existence of compact quotients of homogeneous spaces, measurably proper actions and decay of matrix coefficients, Bull. Soc. Math. France, t. 125, 1997, p. 447-456. | Numdam | MR 99c:22015 | Zbl 0892.22009

[11] Onishchik (A.), Vinberg (E.). - Lie groups and Lie algebras III. - Springer-Verlag, 1993.

[12] Zimmer (R.). - Ergodic theory and semisimple groups. - Birkhäuser, Boston, 1985. | Zbl 0571.58015