@article{BSMF_1998__126_1_79_0, author = {Biquard, Olivier}, title = {Twisteurs des orbites coadjointes et m\'etriques hyper-pseudok\"ahl\'eriennes}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, volume = {126}, year = {1998}, pages = {79-105}, doi = {10.24033/bsmf.2321}, mrnumber = {99h:53055}, zbl = {0929.53024}, language = {fr}, url = {http://dml.mathdoc.fr/item/BSMF_1998__126_1_79_0} }
Biquard, Olivier. Twisteurs des orbites coadjointes et métriques hyper-pseudokählériennes. Bulletin de la Société Mathématique de France, Tome 126 (1998) pp. 79-105. doi : 10.24033/bsmf.2321. http://gdmltest.u-ga.fr/item/BSMF_1998__126_1_79_0/
[1] Sur les équations de Nahm et la structure de Poisson des algèbres de Lie semi-simples complexes, Math. Ann., t. 304, 1996, p. 253-276. | MR 97c:53066 | Zbl 0843.53027
. -[2] Fibrés de Higgs et connexions intégrables : le cas logarithmique (diviseur lisse), Ann. Scient. Éc. Norm. Sup., t. 30, 1997, p. 41-96. | Numdam | MR 98e:32054 | Zbl 0876.53043
. -[3] Hyperkähler metrics on cotangent bundles of hermitian symmetric spaces, in Geometry and Physics, J. Andersen, J. Dupont, H. Pedersen, A. Swann éd., Lect. Notes Pure Appl. Math. 184, Marcel Dekker, 1996, p. 287-298. | MR 97k:53041 | Zbl 0879.53051
, . -[4] La métrique hyperkählérienne des orbites coadjointes de type symétrique d'un groupe de Lie semi-simple complexe, C. R. Acad. Sci. Paris, t. 323, 1996, p. 1259-1264. | MR 97k:53040 | Zbl 0866.58007
, . -[5] Transverse polarizations of minimal nilpotent orbits and geometric quantization, Preprint, 1996.
, . -[6] Some examples of the twistor construction, in Contributions to several complex variables, Hon. W. Stoll, A. Howard, P. M. Wong éd., Aspects Math. E9, Vieweg, 1986, p. 51-67. | MR 88d:32039 | Zbl 0596.53057
. -[7] Nahm's equations and the classification of monopoles, Commun. Math. Phys., t. 96, 1984, p. 387-407. | MR 86c:58039 | Zbl 0603.58042
. -[8] Hyper-Kähler manifolds, Séminaire Bourbaki, exp. n° 748, Astérisque, t. 206, 1992, p. 137-166. | Numdam | MR 94f:53087 | Zbl 0979.53051
. -[9] Integrable systems in Riemannian geometry, Preprint, 1996.
. -[10] Hyperkähler metrics and supersymmetry, Commun. Math. Phys., t. 108, 1987, p. 535-589. | Zbl 0612.53043
, , , . -[11] Hypercomplex algebraic geometry, Preprint.
. -[12] Classical nilpotent orbits as hyperkähler quotients, Int. J. Math., t. 7, 1996, p. 93-210. | MR 97f:53078 | Zbl 0858.53042
, . -[13] Nahm's equations and complex adjoint orbits, Q.J. Math., Oxf. II. Ser., t. 47, 1996, p. 41-58. | MR 97c:53070 | Zbl 0852.53033
. -[14] A hyper-Kählerian structure on coadjoint orbits of a semisimple complex group, J. Lond. Math. Soc., t. 42, 1990, p. 193-208. | MR 92b:53031 | Zbl 0721.22006
. -[15] Instantons and the geometry of the nilpotent variety, J. Differ. Geom., t. 32, 1990, p. 473-490. | MR 91m:58021 | Zbl 0725.58007
. -[16] Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras, Duke Math. J., t. 76, 1994, p. 365-416. | MR 95i:53051 | Zbl 0826.17026
. -[17] Twistor geometry for hyperkähler metrics on complex adjoint orbits, Ann. Global Anal. Geom., t. 15, 1997, p. 361-377. | Zbl 0924.53034
. -[18] The Hodge filtration on nonabelian cohomology, in Algebraic geometry, Santa Cruz 1995, Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI, t. 62, 1997, p. 217-281. | MR 99g:14028 | Zbl 0914.14003
. -