@article{BSMF_1995__123_4_477_0, author = {Mokkadem, Abdelkader}, title = {Orbit theorems for semigroup of regular morphisms and nonlinear discrete time systems}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, volume = {123}, year = {1995}, pages = {477-491}, doi = {10.24033/bsmf.2267}, mrnumber = {97a:20113}, zbl = {0844.93026}, language = {en}, url = {http://dml.mathdoc.fr/item/BSMF_1995__123_4_477_0} }
Mokkadem, Abdelkader. Orbit theorems for semigroup of regular morphisms and nonlinear discrete time systems. Bulletin de la Société Mathématique de France, Tome 123 (1995) pp. 477-491. doi : 10.24033/bsmf.2267. http://gdmltest.u-ga.fr/item/BSMF_1995__123_4_477_0/
[1] Géométrie algébrique réelle. - Springer-Verlag, Berlin, 1987. | Zbl 0633.14016
, et . -[2] Differentiable Germs and Catastrophes. - Cambridge, 1975. | Zbl 0302.58006
. -[3] Dimension Theory. - Princeton, 1941. | JFM 67.1092.03 | MR 3,312b | Zbl 0060.39808
and . -[4] Controllability of Non-linear Discrete Time Systems: a Lie-algebraic approach, Siam J. Cont. Opt., t. 28, 1989, p. 1-33. | Zbl 0693.93009
and . -[5] A Generalization of Chow's Theorem and the Bang-Bang Theorem to Non-Linear Control Systems, Siam J. Cont. Opt., t. 12, 1974, p. 43-52. | MR 52 #4087 | Zbl 0243.93008
. -[6] Orbites de Semi-groupes de Morphismes Réguliers et Systèmes Non Linéaires en Temps Discret, Forum Math., t. 1, 1989, p. 359-376. | MR 90m:93015 | Zbl 0682.93007
. -[7] Linear differential systems with singularities and an application to transitive Lie algebras, J. Math. Soc. Japan, t. 18, 1966, p. 398-404. | MR 33 #8005 | Zbl 0147.23502
. -[8] Polynominal Response Maps. - Springer Verlag, Berlin-New York, 1979. | Zbl 0413.93004
. -[9] Orbit Theorem and Sampling, in Algebraic and Geometric Methods in Nonlinear Control Theory. - M. Fliess and M. Hazewinkel, Eds., Dordrecht, 1986, p. 441-486. | MR 87i:93063
. -[10] Orbit of families of vector fields and integrability of distributions, Trans. Amer. Math. Soc., t. 180, 1973, p. 171-188. | MR 47 #9666 | Zbl 0274.58002
. -[11] Controllability of nonlinear systems, J. Differential Equations, t. 12, 1972, p. 95-116. | MR 49 #3646 | Zbl 0242.49040
and . -