Approximants de Padé et U-dérivation
Duverney, Daniel
Bulletin de la Société Mathématique de France, Tome 122 (1994), p. 553-570 / Harvested from Numdam
@article{BSMF_1994__122_4_553_0,
     author = {Duverney, Daniel},
     title = {Approximants de Pad\'e et $U$-d\'erivation},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     volume = {122},
     year = {1994},
     pages = {553-570},
     doi = {10.24033/bsmf.2246},
     mrnumber = {95i:41028},
     zbl = {0810.05009},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/BSMF_1994__122_4_553_0}
}
Duverney, Daniel. Approximants de Padé et $U$-dérivation. Bulletin de la Société Mathématique de France, Tome 122 (1994) pp. 553-570. doi : 10.24033/bsmf.2246. http://gdmltest.u-ga.fr/item/BSMF_1994__122_4_553_0/

[1] Alladi (K.) and Robinson (M.L.). - Legendre Polynomials and Irrationality, J. Reine Angew. Math., t. 318, 1980, p. 137-155. | MR 81i:10036 | Zbl 0425.10039

[2] Borwein (P.). - Padé Approximants for the q-Elementary Functions, Constr. Approx., t. 4, 1988, p. 391-402. | MR 89f:41022 | Zbl 0685.41015

[3] Borwein (P.). - On the Irrationality of ∑(1/(qn + r)), J. Number Theory, t. 37, 1991, p. 253-259. | MR 92b:11046 | Zbl 0718.11029

[4] Brezinski (C.). - Padé-type Approximation and General Orthogonal Polynomials. - Birkhäuser, 1980. | MR 82a:41017 | Zbl 0418.41012

[5] Brezinski (C.) and Van Iseghem (J.). - Padé Approximations, Handbook of Numerical Analysis. - P.G. Ciarlet and J.L. Lions ed., North Holland, 1992.

[6] Duverney (D.). - U-Dérivation. - Annales Fac. Sci. Toulouse, série 6, vol II, fasc. 3, 1993, p. 323-335. | Numdam | MR 94m:12008 | Zbl 0803.12003

[7] Exton (M.). - q-Hypergeometric Functions and Applications, Chichester, 1983. | Zbl 0514.33001

[8] Gasper (G.) and Rahman (M.). - Basic Hypergeometric Series. - Cambridge University Press, 1990. | MR 91d:33034 | Zbl 0695.33001

[9] Luke (Y.L.). - The Special Functions and their Approximations. - Academic Press, 1969. | Zbl 0193.01701

[10] Padé (H.). - Sur les développements en fractions continues de la fonction F(h, 1, h′, u) et la généralisation de la théorie des fonctions sphériques, C.R. Acad. Sci. Paris, t. 141, 1905, p. 819-821. | JFM 36.0297.03

[11] Thomae (J.). - Beiträge zur Theorie der durch die Heinesche Reine..., J. Reine Angew. Math., t. 70, 1869, p. 258-281. | JFM 02.0122.04

[12] Wallisser (R.). - Rationale Approximation des q-Analogons der Exponentialfunktion und Irrationalitätsaussagen für diese Funktion, Archiv Math., t. 44, 1985, p. 59-64. | MR 86i:11036 | Zbl 0558.33004