@article{BSMF_1993__121_4_465_0, author = {Blanchard, Fran\c cois}, title = {A disjointness theorem involving topological entropy}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, volume = {121}, year = {1993}, pages = {465-478}, doi = {10.24033/bsmf.2216}, mrnumber = {95e:54050}, zbl = {0814.54027}, language = {en}, url = {http://dml.mathdoc.fr/item/BSMF_1993__121_4_465_0} }
Blanchard, François. A disjointness theorem involving topological entropy. Bulletin de la Société Mathématique de France, Tome 121 (1993) pp. 465-478. doi : 10.24033/bsmf.2216. http://gdmltest.u-ga.fr/item/BSMF_1993__121_4_465_0/
[AKM] Topological entropy, Trans. Amer. Math. Soc., t. 114, 1965, p. 309-319. | MR 30 #5291 | Zbl 0127.13102
, and . -[Au] Minimal flows and their extensions. - North-Holland Math. Studies 153, North-Holland, Amsterdam, 1988. | MR 89m:54050 | Zbl 0654.54027
. -[B] Fully positive topological entropy and topological mixing, Symbolic Dynamics and Applications (in honour of R.L. Adler), AMS Contemporary Mathematics, Providence, RI, 1992. | MR 93k:58134 | Zbl 0783.54033
. -[BL] Zero-entropy factors of topological flows, to appear in Proc. AMS. | Zbl 0787.54040
and . -[DGS] Ergodic theory on compact spaces, Lecture Notes in Math., t. 527, Springer, Berlin, 1976. | MR 56 #15879 | Zbl 0328.28008
, and . -[F] Disjointness in ergodic theory, minimal sets, and a problem in diophantine approximation, Math. Systems Th., t. 1, 1967, p. 1-55. | MR 35 #4369 | Zbl 0146.28502
. -[GW] Strictly ergodic, uniform positive entropy models, to appear in Bull. Soc. Math. France. | Numdam | Zbl 0833.54022
and . -[HK] On the entropy of uniquely ergodic transformations, Trans. Amer. Math. Soc., t. 126, 1967, p. 335-360. | MR 34 #7772 | Zbl 0191.21502
and . -[P] Disjointness and weak mixing of minimal sets, Proc. Amer. Math. Soc., t. 24, 1970, p. 278-280. | MR 40 #3522 | Zbl 0188.55503
. -[We] Topological transitivity and ergodic measures, Math. Systems Th., t. 5, 1971, p. 71-75. | MR 45 #5987 | Zbl 0212.40103
. -[Wi] Tplitz minimal flows which are not uniquely ergodic, Z. Wahrscheinlichkeitsth. verw. Gebiete, t. 57, 1984, p. 95-107. | MR 86k:54062 | Zbl 0584.28007
. -