@article{BSMF_1990__118_2_193_0,
author = {Letzter, Gail and Makar-Limanov, Leonid},
title = {Rings of differential operators over rational affine curves},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
volume = {118},
year = {1990},
pages = {193-209},
doi = {10.24033/bsmf.2143},
mrnumber = {91m:16023},
zbl = {0722.16013},
language = {en},
url = {http://dml.mathdoc.fr/item/BSMF_1990__118_2_193_0}
}
Letzter, Gail; Makar-Limanov, Leonid. Rings of differential operators over rational affine curves. Bulletin de la Société Mathématique de France, Tome 118 (1990) pp. 193-209. doi : 10.24033/bsmf.2143. http://gdmltest.u-ga.fr/item/BSMF_1990__118_2_193_0/
[1] . - Commutative Linear Differential Operators, Pacific Journal of Mathematics, t. 8, 1958, p. 1-10. | MR 20 #1808 | Zbl 0218.12054
[2] . - Sur les algèbres de Weyl, Bull. Soc. Math. France, t. 96, 1968, p. 209-242. | Numdam | MR 39 #4224 | Zbl 0165.04901
[3] . - Centralizers in Differential, Pseudodifferential, and Franctional Differential Operator Rings, Rocky Mountain Journal of Mathematics, t. 13, 1983, p. 573-618. | MR 85b:13039 | Zbl 0532.16002
[4] . - Non Isomorphic Curves with Isomorphic Rings of Differential Operators, preprint.
[5] . - Rings of Differential Operators on Algebraic Curves, J. of the London Mathematical Society, t. 21, 1989, p. 538-540. | MR 90j:16004 | Zbl 0693.16003
[6] . - Commutative Algebra. - W.A. Benjamin Co, New York, 1970. | Zbl 0211.06501
[7] . - Some Rings of Differential Operators which are Morita Equivalent to the Weyl Algebra A1, Proc. Amer. Math. Soc., t. 98, 1986, p. 29-30. | MR 88a:16012 | Zbl 0599.16001
[8] . - Commutative Subalgebras of the Ring of Differential Operators on a Curve, Pacific J. Math., t. 139, 1989, p. 279-302. | MR 90j:14035 | Zbl 0692.13019
[9] and . - Differential Operators on an Affine Curve, Proc. London Math. Soc., t. 56, 1988, p. 229-259. | MR 89d:14039 | Zbl 0672.14017
[10] . - Endomorphisms of Right Ideals of the Weyl Algebra, Transactions of the AMS, t. 299, 1987, p. 623-639. | MR 88d:16025 | Zbl 0615.16022