@article{BSMF_1985__113__387_0, author = {Nkashama, M.N.}, title = {Solutions p\'eriodiques des syst\`emes non conservatifs p\'eriodiquement perturb\'es}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, volume = {113}, year = {1985}, pages = {387-402}, doi = {10.24033/bsmf.2040}, mrnumber = {87i:34046}, zbl = {0607.34041}, language = {fr}, url = {http://dml.mathdoc.fr/item/BSMF_1985__113__387_0} }
Nkashama, M.N. Solutions périodiques des systèmes non conservatifs périodiquement perturbés. Bulletin de la Société Mathématique de France, Tome 113 (1985) pp. 387-402. doi : 10.24033/bsmf.2040. http://gdmltest.u-ga.fr/item/BSMF_1985__113__387_0/
[1] An existence theorem for periodically perturbed conservative systems, Michigan Math. J., vol. 20, 1973, p. 385-392. | MR 49 #10971 | Zbl 0294.34029
. -[2] On the unique solvability of semi-linear operator equations in Hilbert spaces, J. Math. pures et appl., vol. 61, 1982, p. 149-175. | MR 83k:47049 | Zbl 0501.47024
. -[3] On periodic solutions of non-conservative systems, Nonlinear Analysis, Theory, Methods and Appl., vol. 6, 1982, p. 733-743. | MR 84k:58063 | Zbl 0532.47052
and . -[4] Solutions of nonlinear elliptic systems with meshed spectra, Nonlinear Analysis, Theory, Methods and Appl., vol. 4, 1980, p. 1023-1030. | MR 82a:47056 | Zbl 0456.35050
. -[5] Periodically perturbed conservative systems and a global inverse function theorem, Nonlinear Analysis, Theory, Methods and Appl., vol. 4, 1980, p. 193-201. | MR 81b:34030 | Zbl 0428.34015
and . -[6] On boundary value problems for ordinary differential equations, J. Diff. Eq., vol. 14, 1973, p. 326-337. | MR 48 #8935 | Zbl 0285.34009
and . -[7] Applications of generic bifurcation I, Arch. Rat. Mech. An., vol. 59, 1975, p. 159-188. | MR 52 #11675 | Zbl 0328.47036
, and . -[8] Linear Operators, vol. 1, Inter-science Publishers, Wiley, New York, 1964. | Zbl 0084.10402
and ,[9] Periodic solutions for some forced second order Lienard and Duffing systems, Bol. Un. Mat. Italiana, vol. 4-B, 1985, p. 557-568. | MR 87a:34040 | Zbl 0627.34043
and . -[10] Periodically perturbed conservative systems, J. Differential Equations, vol. 16, 1974, p. 506-514. | MR 54 #5543 | Zbl 0349.34029
,[11] On a class of nonlinear boundary value problems, J. Differential Eq., vol. 26, 1977, p. 1-8. | MR 58 #1349 | Zbl 0326.34024
and ,[12] Analyse réelle, Inter-Éditions, Paris, 1977.
,[13] Application of a lemma on bilinear forms to a problem in nonlinear oscillations, Proc. Amer. Math. Soc., vol. 33, 1972, p. 89-94. | MR 45 #2258 | Zbl 0257.34041
,[14] On periodically perturbed conservative systems, Michigan Math. J., vol. 16, 1969, p. 193-200. | MR 39 #7212 | Zbl 0187.34501
and . -[15] Contractive mappings and periodically perturbed conservative systems, Arch. Math. (Brno), vol. 12, 1976, p. 67-73. | MR 55 #10779 | Zbl 0353.47034
,[16] Topological degree methods in nonlinear boundary value problems, Regional Conf. Series in Math. n° 40, Amer. Math. Soc., Providence R.I., 1979, Second printing, 1981. | MR 80c:47055 | Zbl 0414.34025
,[17] Compacité, monotonie et convexité dans l'étude de problèmes aux limites semi-linéaires, Sem. Anal. Moderne, n° 19, Université de Sherbrooke, Québec, 1981. | Zbl 0497.47033
. -[18] Some elementary properties of proper values and proper vectors of matrix functions, S.I.A.M. J. Appl. Math., (2), vol. 18, 1970, p. 259-266. | MR 41 #8623 | Zbl 0192.37201
,[19] Contractive mappings and periodically perturbed non-conservative systems, Lincei-Rend. Sc. fis. mat. e nat., vol. 58, 1975, p. 696-702. | MR 55 #3428 | Zbl 0344.34033
. -[20] Periodic solutions of perturbed conservative systems, Proc. Amer. Math. Soc., vol. 72, 1978, p. 281-285. | MR 80b:34045 | Zbl 0418.34045
. -[21] The existence of periodic solutions for nonlinearly perturbed conservative systems, Nonlinear Analysis, Theory, Methods and Appl., vol. 5, 1979, p. 697-705. | MR 80h:34053 | Zbl 0434.34031
,