@article{BSMF_1983__111__367_0, author = {Cenzer, Douglas and Mauldin, R. Daniel}, title = {On the Borel class of the derived set operator. II}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, volume = {111}, year = {1983}, pages = {367-372}, doi = {10.24033/bsmf.1994}, mrnumber = {86a:54046}, zbl = {0552.54027}, language = {en}, url = {http://dml.mathdoc.fr/item/BSMF_1983__111__367_0} }
Cenzer, Douglas; Mauldin, R. Daniel. On the Borel class of the derived set operator. II. Bulletin de la Société Mathématique de France, Tome 111 (1983) pp. 367-372. doi : 10.24033/bsmf.1994. http://gdmltest.u-ga.fr/item/BSMF_1983__111__367_0/
[1] Monotone reducibility and the family of finite sets, J. Symbolic Logic, to appear. | Zbl 0573.54030
,[2] On the Borel class of the derived set operator, Bull. Math. Soc. France, 110, 4, 1982, p. 1-24. | Numdam | MR 85b:54058 | Zbl 0514.54027
and ,[3] Some problems concerning semi-continuous set-valued mappings, in Set-Valued Mappings, Selections and Topological Properties of 2x, Lecture Notes in Math., vol. 171, Springer-Verlag, 1970, p. 45-48. | MR 43 #4006 | Zbl 0205.26803
,[4] Set Theory, North-Holland, 1976. | MR 58 #5230 | Zbl 0337.02034
and ,[5] Leçons sur les Ensembles Analytiques, Gauthier-Villars, 1930. | JFM 56.0085.01
,