The Leray-Schauder index and the fixed point theory for arbitrary ANRs
Granas, Andrzej
Bulletin de la Société Mathématique de France, Tome 100 (1972), p. 209-228 / Harvested from Numdam
@article{BSMF_1972__100__209_0,
     author = {Granas, Andrzej},
     title = {The Leray-Schauder index and the fixed point theory for arbitrary ANRs},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     volume = {100},
     year = {1972},
     pages = {209-228},
     doi = {10.24033/bsmf.1737},
     mrnumber = {46 \#8213},
     zbl = {0236.55004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BSMF_1972__100__209_0}
}
Granas, Andrzej. The Leray-Schauder index and the fixed point theory for arbitrary ANRs. Bulletin de la Société Mathématique de France, Tome 100 (1972) pp. 209-228. doi : 10.24033/bsmf.1737. http://gdmltest.u-ga.fr/item/BSMF_1972__100__209_0/

[1] Arens (R. F.) and Eells (J., Jr). - On embedding uniform and topological spaces, Pacific J. Math., t. 6, 1956, p. 397-403. | MR 18,406e | Zbl 0073.39601

[2] Birkhoff (G. D.) and Kellogg (O. D.). - Invariant points in function spaces, Trans. Amer. math. Soc., t. 23, 1922, p. 96-115. | JFM 48.0472.02 | MR 1501192

[3] Borsuk (K.). - Theory of retracts. - Warszawa, PWN - Polish scientific Publishers, 1967 (Polska Akad. Nauk, Monographie matem., 44). | MR 35 #7306 | Zbl 0153.52905

[4] Bourgin (D. G.). - Un indice dei punti, I, II, Atti Acad. naz. dei Lincei, Série 8, t. 19, 1955, p. 435-440 ; t. 20, 1956, p. 43-48. | MR 17,1120g | Zbl 0073.39706

[5] Browder (F. E.). - On the fixed point index for continuous mappings of locally connected spaces, Summa bras. Math., t. 4, 1960, p. 253-293. | MR 26 #4354 | Zbl 0102.37901

[6] Browder (F. E.). - Fixed point theorems on infinite dimensional manifolds, Trans. Amer. math. Soc., t. 119, 1965, p. 179-194. | MR 33 #3287 | Zbl 0132.18803

[7] Deleanu (A.). - Théorie des points fixes sur les rétractes de voisinages des espaces convexoïdes, Bull. Soc. math. France, t. 87, 1959, p. 235-243. | Numdam | MR 26 #763 | Zbl 0093.36801

[8] Dold (A.). - Fixed point index and fixed point theorem for euclidean neigh-bourhood retracts, Topology, Oxford, t. 4, 1965, p. 1-8. | MR 33 #1850 | Zbl 0135.23101

[9] Dugundji (J.). - An extension of Tietze's theorem, Pacific J. Math., t. 1, 1951, p. 353-367. | MR 13,373c | Zbl 0043.38105

[10] Granas (A.). - The theory of compact vector fields and some of its applications to topology of functional spaces, Rozprawy Matematyczne, Warszawa, n° 30, 1962, 93 pages. | MR 26 #6743 | Zbl 0111.11001

[11] Granas (A.). - Generalizing the Hopf-Lefschetz fixed point theorem for non-compact ANR-s, Symposium on infinite dimensional topology [1967. Bâton Rouge]. | Zbl 0235.55008

[12] Granas (A.). - Some theorems in fixed point theory. The Leray-Schauder index and the Lefschetz number, Bull. Acad. polon. Sc., t. 17, 1969, p. 131-137. | MR 39 #7588 | Zbl 0185.51204

[13] Granas (A.). - Topics in infinite dimensional topology, Séminaire Leray, 9e année, 1969-1970, fasc. 3. | Numdam

[14] Knill (R.). - On the homology of a fixed point set, Bull. Amer. math. Soc., t. 77, 1971, p. 184-190. | MR 45 #9320 | Zbl 0214.49902

[15] Leray (J.). - Sur les équations et les transformations, J. Math. pures et appl. 9e série, t. 24, 1945, p. 201-248. | MR 7,468g | Zbl 0060.40705

[16] Leray (J.). - Théorie des points fixes : indice total et nombre de Lefschetz, Bull. Soc. math. France, t. 87, 1959, p. 221-233. | Numdam | MR 26 #762 | Zbl 0093.36702

[17] Leray (J.). - Fixed point index and Lefschetz number, Symposium on infinite dimensional topology [1967. Bâton Rouge]. | Zbl 0235.55007

[18] Leray (J.) et Schauder (J.). - Topologie et équations fonctionnelles, Ann. scient. Éc. Norm. Sup., t. 51, 1934, p. 45-78. | JFM 60.0322.02 | Numdam | Zbl 0009.07301

[19] Nagumo (M.). - Degree of mapping in convex linear topological spaces, Amer. J. Math., t. 73, 1951, p. 497-511. | MR 13,150b | Zbl 0043.17801

[20] Schauder (J.), - Der Fixpunktsatz in Funktionalraumen, Studia Math., Warszawa, t. 2, 1930, p. 171-196. | JFM 56.0355.01