@article{BSMF_1969__97__369_0,
author = {Tamura, Takayuki},
title = {Commutative semigroups whose lattice of congruences is a chain},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
volume = {97},
year = {1969},
pages = {369-380},
doi = {10.24033/bsmf.1689},
mrnumber = {41 \#5527},
zbl = {0191.01705},
language = {en},
url = {http://dml.mathdoc.fr/item/BSMF_1969__97__369_0}
}
Tamura, T. Commutative semigroups whose lattice of congruences is a chain. Bulletin de la Société Mathématique de France, Tome 97 (1969) pp. 369-380. doi : 10.24033/bsmf.1689. http://gdmltest.u-ga.fr/item/BSMF_1969__97__369_0/
[1] . - Naturally totally ordered commutative semigroups, Amer. J. Math., t. 76, 1954, p. 631-646. | MR 15,930b | Zbl 0055.01503
[2] and . - The algebraic theory of semigroups, vol. 1. - Providence, American mathematical Society, 1961 (Mathematical Surveys, 7). | MR 24 #A2627 | Zbl 0111.03403
[3] . - Abelian groups. - Budapest, Publishing House of Hungarian Academy of Science, 1958. | MR 21 #5672 | Zbl 0091.02704
[4] . - Group theory. - Princeton (New Jersey), D. Van Nostrand, 1965. | MR 33 #5702 | Zbl 0133.27302
[5] . - Semigroups with certain types of sub-semigroup lattices, Soviet Math. Dokl., t. 2, 1961, p. 737-740. | Zbl 0105.01504
[6] . - Note on unipotent inversible semigroups, Kodai math. Sem. Rep., t. 3, 1954, p. 93-95. | MR 16,443h | Zbl 0058.01502
[7] and . - On decomposition of a commutative semigroup, Kodai math. Sem. Rep., t. 4, 1954, p. 109-112. | MR 16,670f | Zbl 0058.01503
[8] . - On a monoid whose submonoids form a chain, J. Gakugei, Tokushima Univ., t. 5, 1954, p. 8-16. | MR 16,1085b | Zbl 0058.01404
[9] and . - Existence of greatest decomposition of a semigroup, Kodai math. Sem. Rep., t. 7, 1955, p. 83-84. | MR 18,192b | Zbl 0067.01003
[10] . - Indecomposable completely simple semigroups except groups, Osaka math. J., t. 8, 1956, p. 35-42. | MR 18,282a | Zbl 0070.01803
[11] . - The theory of construction of finite semigroups, I, Osaka math. J., t. 8, 1956, p. 243-261. | MR 18,717e | Zbl 0073.01003
[12] . - Commutative nonpotent archimedean semigroup with cancellation law, I, J. Gakugei, Tokushima Univ., t. 8, 1957, p. 5-11. | MR 20 #3224 | Zbl 0079.25103
[13] . - Another proof of a theorem concerning the greatest semilattice-decomposition of a semigroup, Proc. Jap. Acad., t. 40, 1964, p. 777-780. | MR 31 #3530 | Zbl 0135.04001
[14] . - Notes on commutative archimedean semigroups, I, Proc. Japan Acad., t. 42, 1966, p. 35-40. | MR 36 #2543 | Zbl 0163.02202
[15] . - Decomposability of extension and its application to finite semigroups, Proc. Japan Acad., t. 43, 1967, p. 93-97. | MR 36 #292 | Zbl 0189.02003
[16] . - Construction of trees and commutative archimedean semigroups, Math. Nachrichten, Band 36, 1968, p. 255-287. | MR 37 #6222 | Zbl 0155.04201
[17] . - H-commutative semigroups in which each homomorphism is uniquely determined by its kernel, Pacific J. of Math. (to be published). | Zbl 0313.20042