@article{BSMF_1965__93__43_0, author = {Lions, Jacques-Louis and Strauss, Walter A.}, title = {Some non-linear evolution equations}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, volume = {93}, year = {1965}, pages = {43-96}, doi = {10.24033/bsmf.1616}, mrnumber = {33 \#7663}, zbl = {0132.10501}, language = {en}, url = {http://dml.mathdoc.fr/item/BSMF_1965__93__43_0} }
Lions, Jacques-Louis; Strauss, W.A. Some non-linear evolution equations. Bulletin de la Société Mathématique de France, Tome 93 (1965) pp. 43-96. doi : 10.24033/bsmf.1616. http://gdmltest.u-ga.fr/item/BSMF_1965__93__43_0/
[1]Un théorème de compacité, C. R. Acad. Sc. Paris, t. 256, 1963, p. 5042-5044. | MR 27 #2832 | Zbl 0195.13002
. -[2]Nonlinear elliptic boundary value problems, Bull. Amer, math. Soc., t. 69, 1963, p. 862-874. | MR 27 #6048 | Zbl 0127.31901
. -[3]Strongly nonlinear parabolic boundary value problems (to appear). | Zbl 0143.33501
. -[4]Non-linear equations of evolution, Annals of Math (to appear). | MR 173960 | Zbl 0127.33602
. -[5]Sur les problèmes de Cauchy hyperboliques bien posés, J. Anal. math., Jérusalem, t. 10, 1962-1963, p. 1-90. | MR 150475 | MR 27 #472 | Zbl 0112.32301
. -[6]Ueber die Anfangswertaufgabe für die hydrodynamischen Grund-gleichungen, Math. Nachr., t. 4, 1951, p. 213-231. | MR 50423 | MR 14,327b | Zbl 0042.10604
. -[7]Das Anfangswertproblem im Grossen für eine Klasse nicht-linearer Wellengleichungen, Math. Z., t. 77, 1961, p. 295-308. | MR 130462 | Zbl 0111.09105
. -[8]Hyperbolic differential equations. - Princeton, 1952 (multigraphié). | MR 63548
. -[9]Équations différentielles opérationnelles. - Berlin, Springer, 1961. (Grundlehren der mathematischen Wissenschaften, 111). | MR 153974 | Zbl 0098.31101
. -[10]Quelques remarques sur les équations différentielles opérationnelles du 1er ordre, Rend. Semin. mat. Padova, t. 33, 1963, p. 213-225. | Numdam | Zbl 0117.10201
. -[11]Problèmes aux limites non homogènes, III, Ann. Scuola Norm. Sup. Pisa, t. 15, 1961, p. 311-326. | Numdam | MR 25 #4351 | Zbl 0115.31302
et . -[12]Un théorème d'existence et unicité dans les équations de Navier-Stokes en dimension 2, C. R. Acad. Sc. Paris, t. 248, 1959, p. 3519-3521. | MR 21 #7676 | Zbl 0091.42105
et . -[13]Sur certains problèmes hyperboliques non linéaires, C. R. Acad. Sc. Paris, t. 257, 1963, p. 3267-3270. | MR 29 #3905 | Zbl 0117.06303
et . -[14]Monotone (non-linear) operators in Hilbert space, Duke Math. J., t. 29, 1962, p. 341-346. | MR 29 #6319 | Zbl 0111.31202
. -[15]On a “monotonicity” method for the solution of non-linear equations in Banach spaces, Proc. Nat. Acad. Sc. U. S. A., t. 50, 1963, p. 1038-1041. | MR 28 #5358 | Zbl 0124.07303
. -[16]On embedding, extension and approximation of differentiable functions, Uspekhi Mat. Nauk., t. 16, 1961, p. 63-114. | MR 26 #6757 | Zbl 0117.29101
. -[17]Soluzioni periodiche di equazioni a derivati parziali di tipo iperbolico non lineari, Annali di Mat. pura ed appl., t. 42, 1956, p. 25-49. | MR 19,749a | Zbl 0072.10101
. -[18]Non-linear semigroups, Annals of Math., t. 78, 1963, p. 339-364. | MR 27 #2879 | Zbl 0204.16004
. -[19]The global Cauchy problem for a relativistic scalar field with power interaction, Bull. Soc. math. France, t. 91, 1963, p. 129-135. | Numdam | MR 27 #3928 | Zbl 0178.45403
. -[20]Second-order differential equations in Banach space, Soviet Math. (Doklady), t. 151, 1963, p. 1394-1398. | Zbl 0149.35902
. -[21]Un complemento ad un teorema di J.-L. Lions sulle equazioni differenziali astratte del secondo ordine (to appear). | Numdam | Zbl 0197.12201
. -[22]Strongly elliptic quasi-linear systems of differential equations in divergence form, Trudy Mosk. Mat. Obšč., t. 12, 1963, p. 125-184. | Zbl 0144.36201
. -[23]On the solution of boundary-value problems for quasi-linear parabolic equations of arbitrary order, Mat. Sbornik, t. 59, (101), 1962, p. 289-325.
. -[24]On the global solution of the Cauchy problem for some non-linear hyperbolic equations, Mem. Fac. Eng., Kyoto Univ., t. 24, 1962, p. 482-487.
. -[25]On the a priori estimate for solutions of the Cauchy problem for some non-linear wave equations, Kyoto math. J., t. 2, 1962, p. 55-60. | MR 25 #4261 | Zbl 0114.05101
. -[26]Mixed problem for some semi-linear wave equation, Kyoto math. J., t. 2, 1962, p. 61-78. | MR 26 #489 | Zbl 0114.05102
and . -[27]
, (to appear).