The functions that operate on B 0 (Γ) of a discrete group Γ
Varopoulos, N.T.
Bulletin de la Société Mathématique de France, Tome 93 (1965), p. 301-321 / Harvested from Numdam
@article{BSMF_1965__93__301_0,
     author = {Varopoulos, Nicholas Th.},
     title = {The functions that operate on $B\_0(\Gamma )$ of a discrete group $\Gamma $},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     volume = {93},
     year = {1965},
     pages = {301-321},
     doi = {10.24033/bsmf.1626},
     mrnumber = {34 \#565},
     zbl = {0139.30801},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BSMF_1965__93__301_0}
}
Varopoulos, N.T. The functions that operate on $B_0(\Gamma )$ of a discrete group $\Gamma $. Bulletin de la Société Mathématique de France, Tome 93 (1965) pp. 301-321. doi : 10.24033/bsmf.1626. http://gdmltest.u-ga.fr/item/BSMF_1965__93__301_0/

[1] Bourbaki (Nicolas). Intégration, chap. 5. Paris, Hermann, 1956 (Act. scient. et ind., 1244; Bourbaki, 21).

[2] Bourbaki (Nicolas). Intégration, chap. 7-8. Paris, Hermann, 1964 (Act. scient. et ind., 1306; Bourbaki, 29). | Zbl 0156.03204

[3] KuroŠ (A. G.). The theory of groups, vol. 1. New York, Chelsea publishing Comp., 1955. | Zbl 0064.25104

[4] Loève (Michel). Probability theory, 3rd edition. Princeton, D. Van Nostrand Comp., 1963 (The University Series in higher Mathematics). | Zbl 0108.14202

[5] Munroe (M. E.). Introduction to measure and integration. Cambridge, Addison-Wesley publishing Comp., 1953 (Addison-Wesley Mathematics Series). | MR 14,734a | Zbl 0050.05603

[6] Rudin (Walter). Fourier analysis on groups. New York, Interscience Publishers, 1962 (Interscience Tracts in pure and applied Mathematics, 12). | MR 27 #2808 | Zbl 0107.09603

[7] Varopoulos (Nicholas T.). Sur les mesures de Radon d'un groupe localement compact abélien, C. R. Acad. Sc., t. 258, 1964, p. 3805-3808. | Zbl 0128.11402

[8] Varopoulos (Nicholas T.). Sur les mesures de Radon d'un groupe localement compact, C. R. Acad. Sc., t. 258, 1964, p. 4896-4899. | Zbl 0128.11403