Soit un corps local non archimédien de caractéristique résiduelle différente de et . Nous définissons strates semi-simples et caractères semi-simples pour le groupe exceptionnel à l’aide des objets analogues pour le groupe , des automorphismes de trialité et d’une correspondance de Glauberman. Nous construisons alors les types semi-simples associés et nous donnons des conditions suffisantes pour que ces types s’induisent irréductiblement, obtenant ainsi des représentations supercuspidales du groupe .
Let be a local non archimedean field of residual characteristic different from and . We define semisimple strata and semisimple characters for the exceptional group , using the analogous objects for the group , the triality automorphisms and a Glauberman correspondence. We then construct the associated semisimple types and give sufficient conditions for those types to induce irreducibly, thus obtaining supercuspidal representations of the group .
@article{ASENS_2012_4_45_6_985_0, author = {Blasco, Laure and Blondel, Corinne}, title = {Caract\`eres semi-simples de ${\mathrm {G}\_2}(F)$, $F$ corps local non archim\'edien}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, volume = {45}, year = {2012}, pages = {985-1025}, doi = {10.24033/asens.2182}, zbl = {1271.22014}, language = {fr}, url = {http://dml.mathdoc.fr/item/ASENS_2012_4_45_6_985_0} }
Blasco, Laure; Blondel, Corinne. Caractères semi-simples de ${\mathrm {G}_2}(F)$, $F$ corps local non archimédien. Annales scientifiques de l'École Normale Supérieure, Tome 45 (2012) pp. 985-1025. doi : 10.24033/asens.2182. http://gdmltest.u-ga.fr/item/ASENS_2012_4_45_6_985_0/
[1] Building of and centralizers, Transform. Groups 7 (2002), 15-50. | MR 1888474 | Zbl 1001.22016
& ,[2] Buildings of classical groups and centralizers of Lie algebra elements, J. Lie Theory 19 (2009), 55-78. | MR 2531872 | Zbl 1165.22018
& ,[3] Schémas en groupes et immeubles des groupes classiques sur un corps local, Bull. Soc. Math. France 112 (1984), 259-301. | Numdam | MR 788969 | Zbl 0565.14028
& ,[4] Schémas en groupes et immeubles des groupes classiques sur un corps local. II. Groupes unitaires, Bull. Soc. Math. France 115 (1987), 141-195. | Numdam | MR 919421 | Zbl 0636.20027
& ,[5] The admissible dual of via compact open subgroups, Annals of Math. Studies 129, Princeton Univ. Press, 1993. | MR 1204652 | Zbl 0787.22016
& ,[6] Semisimple types in , Compositio Math. 119 (1999), 53-97. | MR 1711578 | Zbl 0933.22027
& ,[7] Finitude pour les représentations lisses de groupes -adiques, J. Inst. Math. Jussieu 8 (2009), 261-333. | MR 2485794 | Zbl 1158.22020
,[8] Schémas en groupes et immeubles des groupes exceptionnels sur un corps local 131 (2003), 307-358. | Numdam | MR 2017142 | Zbl 1060.14063
& ,[9] Supercuspidal representations : an exhaustion theorem, J. Amer. Math. Soc. 20 (2007), 273-320. | MR 2276772 | Zbl 1111.22015
,[10] Comparison of lattice filtrations and Moy-Prasad filtrations for classical groups, J. Lie Theory 19 (2009), 29-54. | MR 2532460 | Zbl 1178.20044
,[11] Tamely ramified supercuspidal representations of classical groups. I. Filtrations, Ann. Sci. École Norm. Sup. 24 (1991), 705-738. | Numdam | MR 1142907 | Zbl 0756.20006
,[12] Level zero -types, Compositio Math. 118 (1999), 135-157. | MR 1713308 | Zbl 0937.22011
,[13] Introduction to quadratic forms, Grundl. math. Wissensch. 117, Springer, 1963. | Zbl 0107.03301
,[14] Theta correspondence associated to , Amer. J. Math. 111 (1989), 801-849. | MR 1020830 | Zbl 0723.11026
& ,[15] Octonions, Jordan algebras and exceptional groups, Springer Monographs in Math., Springer, 2000. | MR 1763974 | Zbl 1087.17001
& ,[16] Double coset decompositions and intertwining, Manuscripta Math. 106 (2001), 349-364. | MR 1869226 | Zbl 0988.22008
,[17] Intertwining and supercuspidal types for -adic classical groups, Proc. London Math. Soc. 83 (2001), 120-140. | MR 1829562 | Zbl 1017.22012
,[18] Semisimple characters for -adic classical groups, Duke Math. J. 127 (2005), 123-173. | MR 2126498 | Zbl 1063.22018
,[19] The supercuspidal representations of -adic classical groups, Invent. Math. 172 (2008), 289-352. | MR 2390287 | Zbl 1140.22016
,[20] Profinite groups, London Mathematical Society Monographs. New Series 19, The Clarendon Press Oxford Univ. Press, 1998. | MR 1691054 | Zbl 0909.20001
,[21] Construction of tame supercuspidal representations, J. Amer. Math. Soc. 14 (2001), 579-622. | MR 1824988 | Zbl 0971.22012
,