Caractères semi-simples de G 2 (F), F corps local non archimédien
Blasco, Laure ; Blondel, Corinne
Annales scientifiques de l'École Normale Supérieure, Tome 45 (2012), p. 985-1025 / Harvested from Numdam

Soit F un corps local non archimédien de caractéristique résiduelle différente de 2 et 3. Nous définissons strates semi-simples et caractères semi-simples pour le groupe exceptionnel G 2 (F) à l’aide des objets analogues pour le groupe SO (8,F), des automorphismes de trialité et d’une correspondance de Glauberman. Nous construisons alors les types semi-simples associés et nous donnons des conditions suffisantes pour que ces types s’induisent irréductiblement, obtenant ainsi des représentations supercuspidales du groupe G 2 (F).

Let F be a local non archimedean field of residual characteristic different from 2 and 3. We define semisimple strata and semisimple characters for the exceptional group G 2 (F), using the analogous objects for the group SO (8,F), the triality automorphisms and a Glauberman correspondence. We then construct the associated semisimple types and give sufficient conditions for those types to induce irreducibly, thus obtaining supercuspidal representations of the group G 2 (F).

Publié le : 2012-01-01
DOI : https://doi.org/10.24033/asens.2182
Classification:  22E50
Mots clés: octonions, trialité, groupe réductif exceptionnel, représentation lisse, caractère semi-simple, type semi-simple
@article{ASENS_2012_4_45_6_985_0,
     author = {Blasco, Laure and Blondel, Corinne},
     title = {Caract\`eres semi-simples de ${\mathrm {G}\_2}(F)$, $F$ corps local non archim\'edien},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     volume = {45},
     year = {2012},
     pages = {985-1025},
     doi = {10.24033/asens.2182},
     zbl = {1271.22014},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/ASENS_2012_4_45_6_985_0}
}
Blasco, Laure; Blondel, Corinne. Caractères semi-simples de ${\mathrm {G}_2}(F)$, $F$ corps local non archimédien. Annales scientifiques de l'École Normale Supérieure, Tome 45 (2012) pp. 985-1025. doi : 10.24033/asens.2182. http://gdmltest.u-ga.fr/item/ASENS_2012_4_45_6_985_0/

[1] P. Broussous & B. Lemaire, Building of GL (m,D) and centralizers, Transform. Groups 7 (2002), 15-50. | MR 1888474 | Zbl 1001.22016

[2] P. Broussous & S. Stevens, Buildings of classical groups and centralizers of Lie algebra elements, J. Lie Theory 19 (2009), 55-78. | MR 2531872 | Zbl 1165.22018

[3] F. Bruhat & J. Tits, Schémas en groupes et immeubles des groupes classiques sur un corps local, Bull. Soc. Math. France 112 (1984), 259-301. | Numdam | MR 788969 | Zbl 0565.14028

[4] F. Bruhat & J. Tits, Schémas en groupes et immeubles des groupes classiques sur un corps local. II. Groupes unitaires, Bull. Soc. Math. France 115 (1987), 141-195. | Numdam | MR 919421 | Zbl 0636.20027

[5] C. J. Bushnell & P. C. Kutzko, The admissible dual of GL (N) via compact open subgroups, Annals of Math. Studies 129, Princeton Univ. Press, 1993. | MR 1204652 | Zbl 0787.22016

[6] C. J. Bushnell & P. C. Kutzko, Semisimple types in GL n , Compositio Math. 119 (1999), 53-97. | MR 1711578 | Zbl 0933.22027

[7] J.-F. Dat, Finitude pour les représentations lisses de groupes p-adiques, J. Inst. Math. Jussieu 8 (2009), 261-333. | MR 2485794 | Zbl 1158.22020

[8] W. T. Gan & J.-K. Yu, Schémas en groupes et immeubles des groupes exceptionnels sur un corps local 131 (2003), 307-358. | Numdam | MR 2017142 | Zbl 1060.14063

[9] J.-L. Kim, Supercuspidal representations : an exhaustion theorem, J. Amer. Math. Soc. 20 (2007), 273-320. | MR 2276772 | Zbl 1111.22015

[10] B. Lemaire, Comparison of lattice filtrations and Moy-Prasad filtrations for classical groups, J. Lie Theory 19 (2009), 29-54. | MR 2532460 | Zbl 1178.20044

[11] L. Morris, Tamely ramified supercuspidal representations of classical groups. I. Filtrations, Ann. Sci. École Norm. Sup. 24 (1991), 705-738. | Numdam | MR 1142907 | Zbl 0756.20006

[12] L. Morris, Level zero 𝐆-types, Compositio Math. 118 (1999), 135-157. | MR 1713308 | Zbl 0937.22011

[13] O. T. O'Meara, Introduction to quadratic forms, Grundl. math. Wissensch. 117, Springer, 1963. | Zbl 0107.03301

[14] S. Rallis & G. Schiffmann, Theta correspondence associated to G 2 , Amer. J. Math. 111 (1989), 801-849. | MR 1020830 | Zbl 0723.11026

[15] T. A. Springer & F. D. Veldkamp, Octonions, Jordan algebras and exceptional groups, Springer Monographs in Math., Springer, 2000. | MR 1763974 | Zbl 1087.17001

[16] S. Stevens, Double coset decompositions and intertwining, Manuscripta Math. 106 (2001), 349-364. | MR 1869226 | Zbl 0988.22008

[17] S. Stevens, Intertwining and supercuspidal types for p-adic classical groups, Proc. London Math. Soc. 83 (2001), 120-140. | MR 1829562 | Zbl 1017.22012

[18] S. Stevens, Semisimple characters for p-adic classical groups, Duke Math. J. 127 (2005), 123-173. | MR 2126498 | Zbl 1063.22018

[19] S. Stevens, The supercuspidal representations of p-adic classical groups, Invent. Math. 172 (2008), 289-352. | MR 2390287 | Zbl 1140.22016

[20] J. S. Wilson, Profinite groups, London Mathematical Society Monographs. New Series 19, The Clarendon Press Oxford Univ. Press, 1998. | MR 1691054 | Zbl 0909.20001

[21] J.-K. Yu, Construction of tame supercuspidal representations, J. Amer. Math. Soc. 14 (2001), 579-622. | MR 1824988 | Zbl 0971.22012