Dans l’espace des modules des fractions rationnelles de degré , le lieu de bifurcation est le support d’un -courant positif fermé qui est appelé courant de bifurcation. Ce courant induit une mesure dont le support est le siège de bifurcations maximales. Notre principal résultat stipule que est de dimension de Hausdorff maximale . Par conséquent, l’ensemble des fractions rationnelles de degré possédant cycles neutres distincts est dense dans un ensemble de dimension de Hausdorff totale.
In the moduli space of degree rational maps, the bifurcation locus is the support of a closed positive current which is called the bifurcation current. This current gives rise to a measure whose support is the seat of strong bifurcations. Our main result says that has maximal Hausdorff dimension . As a consequence, the set of degree rational maps having distinct neutral cycles is dense in a set of full Hausdorff dimension.
@article{ASENS_2012_4_45_6_947_0, author = {Gauthier, Thomas}, title = {Strong bifurcation loci of full Hausdorff dimension}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, volume = {45}, year = {2012}, pages = {947-984}, doi = {10.24033/asens.2181}, mrnumber = {3075109}, language = {en}, url = {http://dml.mathdoc.fr/item/ASENS_2012_4_45_6_947_0} }
Gauthier, Thomas. Strong bifurcation loci of full Hausdorff dimension. Annales scientifiques de l'École Normale Supérieure, Tome 45 (2012) pp. 947-984. doi : 10.24033/asens.2181. http://gdmltest.u-ga.fr/item/ASENS_2012_4_45_6_947_0/
[1] Rational Misiurewicz maps are rare, Comm. Math. Phys. 291 (2009), 645-658. | MR 2534788 | Zbl 1185.37103
,[2] Dimension and measure for semi-hyperbolic rational maps of degree 2, C. R. Math. Acad. Sci. Paris 347 (2009), 395-400. | MR 2537237 | Zbl 1215.37030
& ,[3] Bifurcation currents in holomorphic dynamics on , J. reine angew. Math. 608 (2007), 201-235. | MR 2339474 | Zbl 1136.37025
& ,[4] Lyapunov exponents, bifurcation currents and laminations in bifurcation loci, Math. Ann. 345 (2009), 1-23. | MR 2520048 | Zbl 1179.37067
& ,[5] Distribution of polynomials with cycles of a given multiplier, Nagoya Math. J. 201 (2011), 23-43. | MR 2772169 | Zbl 1267.37049
& ,[6] The Dirichlet problem for a complex Monge-Ampere equation, Bull. Amer. Math. Soc. 82 (1976), 102-104. | MR 393574 | Zbl 0322.31008
& ,[7] Holomorphic families of injections, Acta Math. 157 (1986), 259-286. | MR 857675 | Zbl 0619.30027
& ,[8] Normalization of bundle holomorphic contractions and applications to dynamics, Ann. Inst. Fourier (Grenoble) 58 (2008), 2137-2168. | Numdam | MR 2473632 | Zbl 1151.37038
, & ,[9] Rudiments de dynamique holomorphe, Cours Spécialisés 7, Soc. Math. France, 2001. | MR 1973050 | Zbl 1051.37019
& ,[10] The iteration of cubic polynomials. I. The global topology of parameter space, Acta Math. 160 (1988), 143-206. | MR 945011 | Zbl 0668.30008
& ,[11] Bifurcation measure and postcritically finite rational maps, in Complex dynamics : families and friends / edited by Dierk Schleicher, A K Peters, Ltd., 2009, 491-512. | MR 2508266 | Zbl 1180.37056
& ,[12] Complex analytic sets, Mathematics and its Applications (Soviet Series) 46, Kluwer Academic Publishers Group, 1989. | MR 1111477 | Zbl 0683.32002
,[13] Dynamics of rational maps: a current on the bifurcation locus, Math. Res. Lett. 8 (2001), 57-66. | MR 1825260 | Zbl 0991.37030
,[14] Dynamics of rational maps: Lyapunov exponents, bifurcations, and capacity, Math. Ann. 326 (2003), 43-73. | MR 1981611 | Zbl 1032.37029
,[15] Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings, in Holomorphic dynamical systems, Lecture Notes in Math. 1998, Springer, 2010, 165-294. | MR 2648690 | Zbl 1218.37055
& ,[16] Approximation des fonctions lisses sur certaines laminations, Indiana Univ. Math. J. 55 (2006), 579-592. | MR 2225446 | Zbl 1102.53014
,[17] Cubic polynomials: a measurable view on parameter space, in Complex dynamics : families and friends / edited by Dierk Schleicher, A K Peters, Ltd., 2009, 451-490. | MR 2508265 | Zbl 1180.37058
,[18] Distribution of rational maps with a preperiodic critical point, Amer. J. Math. 130 (2008), 979-1032. | MR 2427006 | Zbl 1246.37071
& ,[19] On the dynamics of rational maps, Ann. Sci. École Norm. Sup. 16 (1983), 193-217. | Numdam | MR 732343 | Zbl 0524.58025
, & ,[20] Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Math. 44, Cambridge Univ. Press, 1995. | MR 1333890 | Zbl 0819.28004
,[21] Complex dynamics and renormalization, Annals of Math. Studies 135, Princeton Univ. Press, 1994. | MR 1312365 | Zbl 0822.30002
,[22] Hausdorff dimension and conformal dynamics. II. Geometrically finite rational maps, Comment. Math. Helv. 75 (2000), 535-593. | MR 1789177 | Zbl 0982.37043
,[23] The Mandelbrot set is universal, in The Mandelbrot set, theme and variations, London Math. Soc. Lecture Note Ser. 274, Cambridge Univ. Press, 2000, 1-17. | MR 1765082 | Zbl 1062.37042
,[24] Quasiconformal homeomorphisms and dynamics. III. The Teichmüller space of a holomorphic dynamical system, Adv. Math. 135 (1998), 351-395. | MR 1620850 | Zbl 0926.30028
& ,[25] One-dimensional dynamics, Ergebn. Math. Grenzg. 25, Springer, 1993. | MR 1239171 | Zbl 0791.58003
& ,[26] On Lattès maps, in Dynamics on the Riemann sphere, Eur. Math. Soc., Zürich, 2006, 9-43. | MR 2348953 | Zbl 1235.37015
,[27] On the continuity of Hausdorff dimension of Julia sets and similarity between the Mandelbrot set and Julia sets, Fund. Math. 170 (2001), 287-317. | MR 1880905 | Zbl 0985.37041
,[28] Real and complex analysis, third éd., McGraw-Hill Book Co., 1987. | MR 924157 | Zbl 0278.26001
,[29] The Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets, Ann. of Math. 147 (1998), 225-267. | MR 1626737 | Zbl 0922.58047
,[30] An alternative proof of Mañé's theorem on non-expanding Julia sets, in The Mandelbrot set, theme and variations, London Math. Soc. Lecture Note Ser. 274, Cambridge Univ. Press, 2000, 265-279. | MR 1765093 | Zbl 1062.37046
& ,[31] Dynamique des applications rationnelles de , in Dynamique et géométrie complexes (Lyon, 1997), Panor. & Synthèses 8, Soc. Math. France, 1999. | MR 1760844 | Zbl 1020.37026
,[32] The arithmetic of dynamical systems, Graduate Texts in Math. 241, Springer, 2007. | MR 2316407 | Zbl 1130.37001
,[33] Misiurewicz maps unfold generically (even if they are critically non-finite), Fund. Math. 163 (2000), 39-54. | MR 1750334 | Zbl 0965.37038
,[34] Hausdorff dimension of subsets of the parameter space for families of rational maps. (A generalization of Shishikura's result), Nonlinearity 11 (1998), 233-246. | MR 1610752 | Zbl 1019.37502
,[35] Rational functions with no recurrent critical points, Ergodic Theory Dynam. Systems 14 (1994), 391-414. | MR 1279476 | Zbl 0807.58025
,