On établit des résultats de l'analyse harmonique locale nécessaires pour la formule des traces invariante d'Arthur pour les revêtements de groupes réductifs connexes. Plus précisément, on démontre pour les revêtements locaux (1) la formule de Plancherel et des préparatifs reliés, (2) la normalisation des opérateurs d'entrelacement soumise aux conditions d'Arthur, (3) le comportement local de caractères de représentations admissibles dans le cas non archimédien, et (4) la partie spécifique de la formule des traces locale invariante. Comme un sous-produit de la démonstration de la formule des traces locale invariante, on obtient aussi la densité de caractères tempérés pour les revêtements.
We establish some results in local harmonic analysis which are necessary for Arthur's invariant trace formula for coverings of connected reductive groups. More precisely, for local coverings we will study (1) the Plancherel formula and its preparations, (2) the normalization of intertwining operators subject to Arthur's conditions, (3) the local behavior of characters of admissible representations in the nonarchimedean case, and (4) the genuine part of the invariant local trace formula. As a byproduct of the invariant local trace formula, we deduce the density of tempered characters for coverings.
@article{ASENS_2012_4_45_5_787_0, author = {Li, Wen-Wei}, title = {La formule des traces pour les rev\^etements de groupes r\'eductifs connexes. II. Analyse harmonique locale}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, volume = {45}, year = {2012}, pages = {787-859}, doi = {10.24033/asens.2178}, mrnumber = {3053009}, language = {fr}, url = {http://dml.mathdoc.fr/item/ASENS_2012_4_45_5_787_0} }
Li, Wen-Wei. La formule des traces pour les revêtements de groupes réductifs connexes. II. Analyse harmonique locale. Annales scientifiques de l'École Normale Supérieure, Tome 45 (2012) pp. 787-859. doi : 10.24033/asens.2178. http://gdmltest.u-ga.fr/item/ASENS_2012_4_45_5_787_0/
[1] Unitary Shimura correspondences for split real groups, J. Amer. Math. Soc. 20 (2007), 701-751. | MR 2291917 | Zbl 1114.22009
, , , & ,[2] Some applications of Bruhat-Tits theory to harmonic analysis on the Lie algebra of a reductive -adic group, Michigan Math. J. 50 (2002), 263-286. | MR 1914065 | Zbl 1018.22013
& ,[3] A theorem on the Schwartz space of a reductive Lie group, Proc. Nat. Acad. Sci. U.S.A. 72 (1975), 4718-4719. | MR 460539 | Zbl 0311.43010
,[4] The trace formula in invariant form, Ann. of Math. 114 (1981), 1-74. | MR 625344 | Zbl 0495.22006
,[5] The invariant trace formula. I. Local theory, J. Amer. Math. Soc. 1 (1988), 323-383. | MR 928262 | Zbl 0682.10021
,[6] The invariant trace formula. II. Global theory, J. Amer. Math. Soc. 1 (1988), 501-554. | MR 939691 | Zbl 0667.10019
,[7] Harmonic analysis of tempered distributions on semisimple Lie groups of real rank one, in Representation theory and harmonic analysis on semisimple Lie groups, Math. Surveys Monogr. 31, Amer. Math. Soc., 1989, Dissertation, Yale University, New Haven, CT, 1970, 13-100. | MR 1011896 | Zbl 0762.22007
,[8] Intertwining operators and residues. I. Weighted characters, J. Funct. Anal. 84 (1989), 19-84. | MR 999488 | Zbl 0679.22011
,[9] A local trace formula, Publ. Math. I.H.É.S. 73 (1991), 5-96. | Numdam | MR 1114210 | Zbl 0741.22013
,[10] On elliptic tempered characters, Acta Math. 171 (1993), 73-138. | MR 1237898 | Zbl 0822.22011
,[11] On the Fourier transforms of weighted orbital integrals, J. reine angew. Math. 452 (1994), 163-217. | MR 1282200 | Zbl 0795.43006
,[12] The trace Paley-Wiener theorem for Schwartz functions, in Representation theory and analysis on homogeneous spaces (New Brunswick, NJ, 1993), Contemp. Math. 177, Amer. Math. Soc., 1994, 171-180. | MR 1303605 | Zbl 0854.22011
,[13] Canonical normalization of weighted characters and a transfer conjecture, C. R. Math. Acad. Sci. Soc. R. Can. 20 (1998), 33-52. | MR 1623485 | Zbl 0906.11021
,[14] A stable trace formula. III. Proof of the main theorems, Ann. of Math. 158 (2003), 769-873. | MR 2031854 | Zbl 1051.11027
,[15] Representations of the group where is a local non-Archimedean field, Uspehi Mat. Nauk 31 (1976), 5-70. | MR 425030 | Zbl 0342.43017
& ,[16] Induced representations of reductive -adic groups. I, Ann. Sci. École Norm. Sup. 10 (1977), 441-472. | Numdam | MR 579172 | Zbl 0412.22015
& ,[17] Intégrales orbitales sur les algèbres de Lie réductives, Invent. Math. 115 (1994), 163-207. | MR 1248081 | Zbl 0814.22005
,[18] Intégrales orbitales sur les groupes de Lie réductifs, Ann. Sci. École Norm. Sup. 27 (1994), 573-609. | Numdam | MR 1296557 | Zbl 0832.22017
,[19] Central extensions of reductive groups by , Publ. Math. I.H.É.S. 94 (2001), 5-85. | Numdam | MR 1896177 | Zbl 1093.20027
& ,[20] Characters of nonconnected, reductive -adic groups, Canad. J. Math. 39 (1987), 149-167. | MR 889110 | Zbl 0629.22008
,[21] Morning seminar on the trace formula, Institute for Advanced Study, 1984, lecture notes.
, & ,[22] Parabolic induction and Jacquet functors for metaplectic groups, J. Algebra 323 (2010), 241-260. | MR 2564837 | Zbl 1185.22013
& ,[23] Harish-Chandra, Discrete series for semisimple Lie groups. II. Explicit determination of the characters, Acta Math. 116 (1966), 1-111. | MR 219666 | Zbl 0199.20102
[24] Harish-Chandra, Harmonic analysis on real reductive groups. III. The Maass-Selberg relations and the Plancherel formula, Ann. of Math. 104 (1976), 117-201. | MR 439994 | Zbl 0331.22007
[25] Harish-Chandra 1999. | MR 1702257 | Zbl 0928.22017
[26] Cuspidal geometry of -adic groups, J. Analyse Math. 47 (1986), 1-36. | MR 874042 | Zbl 0634.22009
,[27] Metaplectic forms, Publ. Math. I.H.É.S. 59 (1984), 35-142. | Numdam | MR 743816 | Zbl 0559.10026
& ,[28] Cohomological induction and unitary representations, Princeton Mathematical Series 45, Princeton Univ. Press, 1995. | MR 1330919 | Zbl 0863.22011
& ,[29] Classification theorems for representations of semisimple Lie groups, in Non-commutative harmonic analysis (Actes Colloq., Marseille-Luminy, 1976), 587, Springer, 1977, 138-159. | MR 476923 | Zbl 0353.22011
& ,[30] A note on the Langlands classification and irreducibility of induced representations of -adic groups, Kyushu J. Math. 57 (2003), 383-409. | MR 2050093 | Zbl 1054.22018
,[31] La formule des traces pour les revêtements de groupes réductifs connexes. I. Le développement géométrique fin, preprint arXiv:1004.4011, 2010. | Zbl pre06181407
,[32] Metaplectic Whittaker functions and crystal bases, Duke Math. J. 156 (2011), 1-31. | MR 2746386 | Zbl 1217.22015
,[33] Comparisons of general linear groups and their metaplectic coverings. II, Represent. Theory 5 (2001), 524-580. | MR 1870602 | Zbl 1069.11019
,[34] The Knapp-Stein dimension theorem for -adic groups, Proc. Amer. Math. Soc. 68 (1978), 243-246. | MR 492091 | Zbl 0348.22007
,[35] CorrectionProc. Amer. Math. Soc. 76 (1979), 169-170. | MR 492091 | Zbl 0415.22020
,[36] La formule de Plancherel pour les groupes -adiques (d'après Harish-Chandra), J. Inst. Math. Jussieu 2 (2003), 235-333. | MR 1989693 | Zbl 1029.22016
,[37] Real reductive groups. I, Pure and Applied Mathematics 132, Academic Press Inc., 1988. | MR 929683 | Zbl 0666.22002
,[38] Real reductive groups. II, Pure and Applied Mathematics 132-II, Academic Press Inc., 1992. | MR 1170566 | Zbl 0785.22001
,[39] Metaplectic tori over local fields, Pacific J. Math. 241 (2009), 169-200. | MR 2485462 | Zbl 1230.11064
,