Nous classons les variétés compactes kählériennes de dimension munies d’une action d’un réseau dans un groupe de Lie réel presque simple de rang . Ceci complète le programme de Zimmer dans ce cadre, et caractérise certains tores complexes compacts par des propriétés de leur groupe d’automorphismes.
We classify compact Kähler manifolds of dimension on which acts a lattice of an almost simple real Lie group of rank . This provides a new line in the so-called Zimmer program, and characterizes certain complex tori as compact Kähler manifolds with large automorphisms groups.
@article{ASENS_2012_4_45_3_447_0, author = {Cantat, Serge and Zeghib, Abdelghani}, title = {Holomorphic actions, Kummer examples, and Zimmer program}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, volume = {45}, year = {2012}, pages = {447-489}, doi = {10.24033/asens.2170}, mrnumber = {3014483}, zbl = {1280.22015}, language = {en}, url = {http://dml.mathdoc.fr/item/ASENS_2012_4_45_3_447_0} }
Cantat, Serge; Zeghib, Abdelghani. Holomorphic actions, Kummer examples, and Zimmer program. Annales scientifiques de l'École Normale Supérieure, Tome 45 (2012) pp. 447-489. doi : 10.24033/asens.2170. http://gdmltest.u-ga.fr/item/ASENS_2012_4_45_3_447_0/
[1] Semigroups containing proximal linear maps, Israel J. Math. 91 (1995), 1-30. | MR 1348303 | Zbl 0845.22004
, & ,[2] Lie group actions in complex analysis, Aspects of Mathematics, E27, Friedr. Vieweg & Sohn, 1995. | MR 1334091 | Zbl 0845.22001
,[3] Kazhdan's property (T), New Mathematical Monographs 11, Cambridge Univ. Press, 2008. | MR 2415834 | Zbl 1146.22009
, & ,[4] Sous-groupes discrets des groupes de Lie, in European Summer School in Group Theory, 1997, 1-72.
,[5] Automorphismes des cônes convexes, Invent. Math. 141 (2000), 149-193. | MR 1767272 | Zbl 0957.22008
,[6] Réseaux des groupes de Lie, cours de Master 2, Université Paris VI, p. 1-72, 2008.
,[7] Regularity of plurisubharmonic upper envelopes in big cohomology classes, in Perspectives in analysis, geometry, and topology, Progr. Math. 296, Birkhäuser, 2012, 39-66. | MR 2884031 | Zbl 1258.32010
& ,[8] Einstein manifolds, Classics in Mathematics, Springer, 2008. | MR 2371700 | Zbl 1147.53001
,[9] Complex tori, Progress in Math. 177, Birkhäuser, 1999. | MR 1713785 | Zbl 0945.14027
& ,[10] Complex Abelian varieties, 2nd éd., Grund. Math. Wiss. 302, Springer, 2004. | MR 2062673 | Zbl 1056.14063
& ,[11] Locally compact groups of differentiable transformations, Ann. of Math. 47 (1946), 639-653. | MR 18187 | Zbl 0061.04407
& ,[12] Les bouts des espaces homogènes de groupes de Lie, Ann. of Math. 58 (1953), 443-457. | MR 57263 | Zbl 0053.13002
,[13] Orbifoldes à première classe de Chern nulle, in The Fano Conference, Univ. Torino, Turin, 2004, 339-351. | Zbl 1068.53051
,[14] Cycle spaces, in Several complex variables, VII, Encyclopaedia Math. Sci. 74, Springer, 1994, 319-349. | Zbl 0811.32020
& ,[15] Sur la dynamique du groupe d’automorphismes des surfaces , Transform. Groups 6 (2001), 201-214. | Zbl 1081.14513
,[16] Version kählérienne d'une conjecture de Robert J. Zimmer, Ann. Sci. École Norm. Sup. 37 (2004), 759-768. | Numdam | Zbl 1072.22006
,[17] Caractérisation des exemples de Lattès et de Kummer, Compos. Math. 144 (2008), 1235-1270. | Zbl 1156.37012
,[18] Sur les groupes de transformations birationnelles des surfaces, Ann. of Math. 174 (2011), 299-340. | Zbl 1233.14011
,[19] Holomorphic actions of higer rank lattices in dimension three, preprint, 2009.
& ,[20] Holomorphic actions, Kummer examples, and Zimmer program, preprint, 2010. | Numdam | Zbl 1280.22015
& ,[21] Mesures de Monge-Ampère et caractérisation géométrique des variétés algébriques affines, Mém. Soc. Math. France (N.S.) 19 (1985). | Numdam | Zbl 0579.32012
,[22] Regularization of closed positive currents and intersection theory, J. Algebraic Geom. 1 (1992), 361-409. | Zbl 0777.32016
,[23] Numerical characterization of the Kähler cone of a compact Kähler manifold, Ann. of Math. 159 (2004), 1247-1274. | Zbl 1064.32019
& ,[24] Comparison of dynamical degrees for semi-conjugate meromorphic maps, Comment. Math. Helv. 86 (2011), 817-840. | MR 2851870 | Zbl 1279.32018
& ,[25] Groupes commutatifs d'automorphismes d'une variété kählérienne compacte, Duke Math. J. 123 (2004), 311-328. | MR 2066940 | Zbl 1065.32012
& ,[26] Coble rational surfaces, Amer. J. Math. 123 (2001), 79-114. | MR 1827278 | Zbl 1056.14054
& ,[27] Groups acting on manifolds: around the Zimmer program, in Geometry, rigidity, and group actions, Chicago Lectures in Math., Univ. Chicago Press, 2011, 72-157. | MR 2807830 | Zbl 1264.22012
,[28] On automorphism groups of compact Kähler manifolds, Invent. Math. 44 (1978), 225-258. | MR 481142 | Zbl 0367.32004
,[29] Introduction to toric varieties, Annals of Math. Studies 131, Princeton Univ. Press, 1993. | MR 1234037 | Zbl 0813.14039
,[30] Representation theory, Graduate Texts in Math. 129, Springer, 1991. | MR 1153249 | Zbl 0744.22001
& ,[31] Actions de réseaux sur le cercle, Invent. Math. 137 (1999), 199-231. | MR 1703323 | Zbl 0995.57006
,[32] Complex homogeneous manifolds with two ends, Michigan Math. J. 28 (1981), 183-198. | MR 616269 | Zbl 0452.32022
& ,[33] Discrete subgroups of Lie groups, in Lie groups and Lie algebras. II, Encyclopaedia of Math. Sciences 21, Springer, 2000. | MR 1756406 | Zbl 0931.22007
, & (éds.),[34] Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann. 146 (1962), 331-368. | MR 137127 | Zbl 0173.33004
,[35] Principles of algebraic geometry, Wiley Classics Library, John Wiley & Sons Inc., 1994. | MR 1288523 | Zbl 0836.14001
& ,[36] On the entropy of holomorphic maps, Enseign. Math. 49 (2003), 217-235. | MR 2026895 | Zbl 1080.37051
,[37] The Novikov conjecture for linear groups, Publ. Math. IHÉS 101 (2005), 243-268. | Numdam | MR 2217050 | Zbl 1073.19003
, & ,[38] La propriété de Kazhdan pour les groupes localement compacts (avec un appendice de Marc Burger), Astérisque 175 (1989). | Zbl 0759.22001
& ,[39] Ample subvarieties of algebraic varieties, Notes written in collaboration with C. Musili. Lecture Notes in Math. 156, Springer, 1970. | MR 282977 | Zbl 0208.48901
,[40] Almost-homogeneous Kähler manifolds with hypersurface orbits, Osaka J. Math. 19 (1982), 763-786. | MR 687772 | Zbl 0507.32023
& ,[41] Differential geometry of complex vector bundles, Publications of the Mathematical Society of Japan 15, Princeton Univ. Press, 1987. | MR 909698 | Zbl 0708.53002
,[42] A theorem of completeness of characteristic systems of complete continuous systems, Amer. J. Math. 81 (1959), 477-500. | MR 112156 | Zbl 0097.36501
& ,[43] An analytic action of a semisimple Lie group in a neighborhood of a fixed point is equivalent to a linear one, Funkcional. Anal. i Priložen 1 (1967), 103-104. | MR 210833 | Zbl 0156.42205
,[44] Algebra, second éd., Addison-Wesley Publishing Company Advanced Book Program, 1984. | MR 783636 | Zbl 0712.00001
,[45] Positivity in algebraic geometry. I and II, Ergebn. Math. Grenzg. 48/49, Springer, 2004. | MR 2095471 | Zbl 1093.14500
,[46] Compactness of the Chow scheme: applications to automorphisms and deformations of Kähler manifolds, in Fonctions de plusieurs variables complexes, III (Sém. François Norguet, 1975-1977), Lecture Notes in Math. 670, Springer, 1978, 140-186. | MR 521918 | Zbl 0391.32018
,[47] Discrete subgroups of semisimple Lie groups, Ergebn. Math. Grenzg. (3) 17, Springer, 1991. | MR 1090825 | Zbl 0732.22008
,[48] Strong rigidity of locally symmetric spaces, Annals of Math. Studies 78, Princeton Univ. Press, 1973. | MR 385004 | Zbl 0265.53039
,[49] Base loci of linear series are numerically determined, Trans. Amer. Math. Soc. 355 (2003), 551-566 (electronic). | MR 1932713 | Zbl 1017.14017
,[50] Lie groups and Lie algebras, III, Encyclopaedia of Math. Sciences 41, Springer, 1994. | MR 1349140 | Zbl 0797.22001
& (éds.),[51] Cartan subgroups and lattices in semi-simple groups, Ann. of Math. 96 (1972), 296-317. | MR 302822 | Zbl 0245.22013
& ,[52] Two-dimensional complex tori with multiplication by , Arch. Math. (Basel) 72 (1999), 278-281. | MR 1678033 | Zbl 0964.14038
,[53] On a generalization of the notion of manifold, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 359-363. | Zbl 0074.18103
,[54] On complex tori with many endomorphisms, Tsukuba J. Math. 8 (1984), 297-318. | Zbl 0581.14032
,[55] Mixed Hodge structure on the vanishing cohomology, in Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, 525-563. | Zbl 0373.14007
,[56] Infinitesimal computations in topology, Publ. Math. I.H.É.S. 47 (1977), 269-331 (1978). | Numdam | Zbl 0374.57002
,[57] Quasi-homogeneous cones, Mat. Zametki 1 (1967), 347-354. | Zbl 0163.16902
& ,[58] Théorie de Hodge et géométrie algébrique complexe, Cours Spécialisés 10, Soc. Math. France, 2002. | Zbl 1032.14001
,[59] A remark on the hard Lefschetz theorem for Kähler orbifolds, Proc. Amer. Math. Soc. 137 (2009), 2497-2501. | Zbl 1169.14015
& ,[60] Spaces of constant curvature, fifth éd., Publish or Perish Inc., 1984. | Zbl 0281.53034
,[61] On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), 339-411. | Zbl 0369.53059
,[62] A theorem of Tits type for compact Kähler manifolds, Invent. Math. 176 (2009), 449-459. | Zbl 1170.14029
,[63] Kazhdan groups acting on compact manifolds, Invent. Math. 75 (1984), 425-436. | MR 735334 | Zbl 0576.22014
,[64] Actions of semisimple groups and discrete subgroups, in Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), Amer. Math. Soc., 1987, 1247-1258. | MR 934329 | Zbl 0671.57028
,[65] Lattices in semisimple groups and invariant geometric structures on compact manifolds, in Discrete groups in geometry and analysis (New Haven, Conn., 1984), Progr. Math. 67, Birkhäuser, 1987, 152-210. | MR 900826 | Zbl 0663.22008
,