Soient une variété de Fano lisse et complexe de dimension arbitraire, et un diviseur premier dans . Nous considérons l’image de dans par l’application naturelle de push-forward de -cycles. Nous démontrons que . De plus, si , alors soit où est une surface de Del Pezzo, soit et a une fibration en surfaces de Del Pezzo sur une variété de Fano lisse , telle que .
Let be a complex Fano manifold of arbitrary dimension, and a prime divisor in . We consider the image of in under the natural push-forward of -cycles. We show that . Moreover if , then either where is a Del Pezzo surface, or and has a fibration in Del Pezzo surfaces onto a Fano manifold such that .
@article{ASENS_2012_4_45_3_363_0, author = {Casagrande, Cinzia}, title = {On the Picard number of divisors in Fano manifolds}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, volume = {45}, year = {2012}, pages = {363-403}, doi = {10.24033/asens.2168}, mrnumber = {3014481}, zbl = {1267.14050}, language = {en}, url = {http://dml.mathdoc.fr/item/ASENS_2012_4_45_3_363_0} }
Casagrande, Cinzia. On the Picard number of divisors in Fano manifolds. Annales scientifiques de l'École Normale Supérieure, Tome 45 (2012) pp. 363-403. doi : 10.24033/asens.2168. http://gdmltest.u-ga.fr/item/ASENS_2012_4_45_3_363_0/
[1] On extremal rays of the higher-dimensional varieties, Invent. Math. 81 (1985), 347-357. | MR 799271 | Zbl 0554.14001
,[2] Vector bundles and adjunction, Internat. J. Math. 3 (1992), 331-340. | MR 1163727 | Zbl 0770.14008
, & ,[3] A view on contractions of higher-dimensional varieties, in Algebraic geometry-Santa Cruz 1995, Proc. Sympos. Pure Math. 62, Amer. Math. Soc., 1997, 153-183. | MR 1492522 | Zbl 0948.14014
& ,[4] Prym varieties and the Schottky problem, Invent. Math. 41 (1977), 149-196. | MR 572974 | Zbl 0333.14013
,[5] Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), 405-468. | MR 2601039 | Zbl 1210.14019
, , & ,[6] Variétés complexes dont l'éclatée en un point est de Fano, C. R. Math. Acad. Sci. Paris 334 (2002), 463-468. | MR 1890634 | Zbl 1036.14020
, & ,[7] Sur une conjecture de Mukai, Comment. Math. Helv. 78 (2003), 601-626. | MR 1998396 | Zbl 1044.14019
, , & ,[8] On covering and quasi-unsplit families of curves, J. Eur. Math. Soc. (JEMS) 9 (2007), 45-57. | MR 2283102 | Zbl 1107.14015
, & ,[9] Toric Fano varieties and birational morphisms, Int. Math. Res. Not. 27 (2003), 1473-1505. | MR 1976232 | Zbl 1083.14516
,[10] Quasi-elementary contractions of Fano manifolds, Compos. Math. 144 (2008), 1429-1460. | MR 2474316 | Zbl 1158.14037
,[11] On Fano manifolds with a birational contraction sending a divisor to a curve, Michigan Math. J. 58 (2009), 783-805. | MR 2595565 | Zbl 1184.14072
,[12] Higher-dimensional algebraic geometry, Universitext, Springer, 2001. | MR 1841091 | Zbl 0978.14001
,[13] Mori dream spaces and GIT, Michigan Math. J. 48 (2000), 331-348. | MR 1786494 | Zbl 1077.14554
& ,[14] Quasi-Gorenstein Fano -folds with isolated nonrational loci, Compositio Math. 77 (1991), 335-341. | Numdam | MR 1092773 | Zbl 0738.14025
,[15] Rational curves on algebraic varieties, Ergebn. Math. Grenzg. 32, Springer, 1996. | Zbl 0877.14012
,[16] Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics 134, Cambridge Univ. Press, 1998. | Zbl 0926.14003
& ,[17] Positivity in algebraic geometry. I, Ergebn. Math. Grenzg. 48, Springer, 2004. | MR 2095471 | Zbl 1093.14500
,[18] A characterization of products of projective spaces, Canad. Math. Bull. 49 (2006), 270-280. | Zbl 1115.14034
,[19] On conic bundle structures, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), 371-408; English translation: Math. USSR Izvestia 20 (1982), 355-390. | Zbl 0593.14034
,[20] Classification of Fano manifolds containing a negative divisor isomorphic to projective space, Geom. Dedicata 123 (2006), 179-186. | Zbl 1121.14036
,[21] On contractions of extremal rays of Fano manifolds, J. reine angew. Math. 417 (1991), 141-157. | Zbl 0721.14023
,