Nous montrons que toute dynamique de classe avec sur une surface compacte admet une extension symbolique, i.e. une extension topologique qui est un sous-décalage à alphabet fini. Nous donnons plus précisément une borne (optimale) sur l’infimum de l’entropie topologique de toutes les extensions symboliques. Ceci répond positivement à une conjecture de S. Newhouse and T. Downarowicz en dimension deux et améliore un résultat précédent de l’auteur [11].
We prove that maps with on a compact surface have symbolic extensions, i.e., topological extensions which are subshifts over a finite alphabet. More precisely we give a sharp upper bound on the so-called symbolic extension entropy, which is the infimum of the topological entropies of all the symbolic extensions. This answers positively a conjecture of S. Newhouse and T. Downarowicz in dimension two and improves a previous result of the author [11].
@article{ASENS_2012_4_45_2_337_0, author = {Burguet, David}, title = {Symbolic extensions in intermediate smoothness on surfaces}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, volume = {45}, year = {2012}, pages = {337-362}, doi = {10.24033/asens.2167}, mrnumber = {2977622}, zbl = {1282.37015}, language = {en}, url = {http://dml.mathdoc.fr/item/ASENS_2012_4_45_2_337_0} }
Burguet, David. Symbolic extensions in intermediate smoothness on surfaces. Annales scientifiques de l'École Normale Supérieure, Tome 45 (2012) pp. 337-362. doi : 10.24033/asens.2167. http://gdmltest.u-ga.fr/item/ASENS_2012_4_45_2_337_0/
[1] Hyperbolic sets exhibiting -persistent homoclinic tangency for higher dimensions, Proc. Amer. Math. Soc. 136 (2008), 677-686. | MR 2358509 | Zbl 1131.37028
,[2] The entropy theory of symbolic extensions, Invent. Math. 156 (2004), 119-161. | MR 2047659 | Zbl 1216.37004
& ,[3] Residual entropy, conditional entropy and subshift covers, Forum Math. 14 (2002), 713-757. | MR 1924775 | Zbl 1030.37012
, & ,[4] Entropy and local complexity of differentiable dynamical sytems, thèse de doctorat, École polytechnique, 2008.
,[5] A proof of Yomdin-Gromov's algebraic lemma, Israel J. Math. 168 (2008), 291-316. | MR 2448063 | Zbl 1169.14038
,[6] A direct proof of the tail variational principle and its extension to maps, Ergodic Theory Dynam. Systems 29 (2009), 357-369. | MR 2486774 | Zbl 1160.37320
,[7] Examples of interval map with large symbolic extension entropy, Discrete Contin. Dyn. Syst. 26 (2010), 873-899. | MR 2600721 | Zbl 1193.37049
,[8] Symbolic extensions for nonuniformly entropy expanding maps, Colloq. Math. 121 (2010), 129-151. | MR 2725708 | Zbl 1277.37049
,[9] surface diffeomorphisms have symbolic extensions, Invent. Math. 186 (2011), 191-236. | MR 2836054 | Zbl 1263.37065
,[10] Symbolic extensions and continuity properties of the entropy, Arch. Math. (Basel) 96 (2011), 387-400. | MR 2794094 | Zbl 1235.37007
,[11] Orders of accumulation of entropy, Fund. Math. 216 (2012), 1-53. | MR 2864449 | Zbl 1252.37008
& ,[12] Intrinsic ergodicity of smooth interval maps, Israel J. Math. 100 (1997), 125-161. | MR 1469107 | Zbl 0889.28009
,[13] A generic condition for existence of symbolic extension of volume preserving diffeomorphisms, preprint arXiv:1109.3080. | MR 2997705 | Zbl pre06163503
,[14] A lower bound for topological entropy of generic non Anosov diffeomorphisms, preprint arXiv:1011.2441.
& ,[15] Constructive approximation, Grund. Math. Wiss. 303, Springer, 1993. | MR 1261635 | Zbl 0797.41016
& ,[16] Symbolic extensions and partially hyperbolic diffeomorphisms, Discrete Contin. Dyn. Syst. 29 (2011), 1419-1441. | MR 2773191 | Zbl 1220.37016
& ,[17] Entropy structure, J. Anal. Math. 96 (2005), 57-116. | MR 2177182 | Zbl 1151.37020
,[18] Entropy in dynamical systems, New Mathematical Monographs 18, Cambridge Univ. Press, 2011. | MR 2809170 | Zbl 1220.37001
,[19] Smooth interval maps have symbolic extensions: the antarctic theorem, Invent. Math. 176 (2009), 617-636. | MR 2501298 | Zbl 1185.37100
& ,[20] Symbolic extensions and smooth dynamical systems, Invent. Math. 160 (2005), 453-499. | MR 2178700 | Zbl 1067.37018
& ,[21] Parameterized complexity theory, Texts in Theoretical Computer Science. An EATCS Series, Springer, 2006. | MR 2238686 | Zbl 1143.68016
& ,[22] Entropy, homology and semialgebraic geometry, Séminaire Bourbaki, vol. 1985/86, exp. no 663, Astérisque 145-146 (1987), 225-240. | Numdam | MR 880035 | Zbl 0611.58041
,[23] Orders of accumulation of entropy on manifolds, J. d'Anal. math. 114 (2011), 157-206. | MR 2837084 | Zbl 1248.54012
,[24] Diffeomorphism without any measure with maximal entropy, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 21 (1973), 903-910. | MR 336764 | Zbl 0272.28013
,[25] Topological conditional entropy, Studia Math. 55 (1976), 175-200. | MR 415587 | Zbl 0355.54035
,[26] Abschätzungen für die Ableitungen einer reellen Funktion eines reellen Arguments, Math. Z. 31 (1930), 356-365. | JFM 55.0133.03 | MR 1545119
,[27] Continuity properties of entropy, Ann. of Math. 129 (1989), 215-235. | MR 986792 | Zbl 0676.58039
,[28] A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems, Trans. Moscow Math. Soc. 19 (1968), 197-231. | Zbl 0236.93034
,[29] Mixing maps of the interval without maximal measure, Israel J. Math. 127 (2002), 253-277. | MR 1900702 | Zbl 1187.37057
,[30] An introduction to ergodic theory, Graduate Texts in Math. 79, Springer, 1982. | MR 648108 | Zbl 0475.28009
,