Nous nous intéressons dans cet article aux propriétés dispersives du système des ondes de surface en dimension , avec tension de surface. Nous démontrons tout d’abord des estimées de Strichartz, avec pertes de dérivées, au niveau de régularité où nous avons construit des solutions dans [3]. Ensuite, pour des données initiales plus régulières, nous démontrons les estimées de Strichartz optimales (i.e. sans perte de régularité par rapport à celles du système linéarisé en ()).
In this paper we investigate the dispersive properties of the solutions of the two dimensional water-waves system with surface tension. First we prove Strichartz type estimates with loss of derivatives at the same low level of regularity we were able to construct the solutions in [3]. On the other hand, for smoother initial data, we prove that the solutions enjoy the optimal Strichartz estimates (i.e, without loss of regularity compared to the system linearized at ()).
@article{ASENS_2011_4_44_5_855_0, author = {Alazard, Thomas and Burq, Nicolas and Zuily, Claude}, title = {Strichartz estimates for water waves}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, volume = {44}, year = {2011}, pages = {855-903}, doi = {10.24033/asens.2156}, mrnumber = {2931520}, zbl = {1260.35140}, language = {en}, url = {http://dml.mathdoc.fr/item/ASENS_2011_4_44_5_855_0} }
Alazard, Thomas; Burq, Nicolas; Zuily, Claude. Strichartz estimates for water waves. Annales scientifiques de l'École Normale Supérieure, Tome 44 (2011) pp. 855-903. doi : 10.24033/asens.2156. http://gdmltest.u-ga.fr/item/ASENS_2011_4_44_5_855_0/
[1] On the Cauchy problem for water gravity waves, preprint, 2011. | Zbl 1308.35195
, & ,[2] On the water-wave equations with surface tension, Duke Math. J. 158 (2011), 413-499. | MR 2805065 | Zbl 1258.35043
, & ,[3] Paralinearization of the Dirichlet to Neumann operator, and regularity of three-dimensional water waves, Comm. Partial Differential Equations 34 (2009), 1632-1704. | MR 2581986 | Zbl 1207.35082
& ,[4] Paracomposition et opérateurs paradifférentiels, Comm. Partial Differential Equations 11 (1986), 87-121. | MR 814548 | Zbl 0596.47023
,[5] Existence d'ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels, Comm. Partial Differential Equations 14 (1989), 173-230. | MR 976971 | Zbl 0692.35063
,[6] The zero surface tension limit of two-dimensional water waves, Comm. Pure Appl. Math. 58 (2005), 1287-1315. | MR 2162781 | Zbl 1086.76004
& ,[7] Équations d'ondes quasilinéaires et estimations de Strichartz, Amer. J. Math. 121 (1999), 1337-1377. | MR 1719798 | Zbl 0952.35073
& ,[8] Nonlinearity and functional analysis, Academic Press, 1977. | MR 488101 | Zbl 0368.47001
,[9] Interpolation spaces. An introduction, Grundl. Math. Wiss. 223, Springer, 1976. | MR 482275 | Zbl 0344.46071
& ,[10] On the Cauchy problem for a capillary drop. I. Irrotational motion, Math. Methods Appl. Sci. 21 (1998), 1149-1183. | MR 1637554 | Zbl 0916.35141
& ,[11] Strichartz estimates for wave equations with coefficients of Sobolev regularity, Comm. Partial Differential Equations 31 (2006), 649-688. | MR 2233036 | Zbl 1098.35036
,[12] Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup. 14 (1981), 209-246. | Numdam | MR 631751 | Zbl 0495.35024
,[13] Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Amer. J. Math. 126 (2004), 569-605. | MR 2058384 | Zbl 1067.58027
, & ,[14] On well-posedness for the Benjamin-Ono equation, Math. Ann. 340 (2008), 497-542. | MR 2357995 | Zbl 1148.35074
& ,[15] Fluides parfaits incompressibles, Astérisque 230 (1995). | MR 1340046 | Zbl 0829.76003
,[16] Strichartz estimates for the water-wave problem with surface tension, Comm. Partial Differential Equations 35 (2010), 2195-2252. | MR 2763354 | Zbl 1280.35107
, & ,[17] Well-posedness of the free-surface incompressible Euler equations with or without surface tension, J. Amer. Math. Soc. 20 (2007), 829-930. | MR 2291920 | Zbl 1123.35038
& ,[18] Global solutions for the gravity water waves equation in dimension 3, C. R. Math. Acad. Sci. Paris 347 (2009), 897-902. | MR 2542891 | Zbl 1177.35168
, & ,[19] A long wave approximation for capillary-gravity waves and an effect of the bottom, Comm. Partial Differential Equations 32 (2007), 37-85. | MR 2304142 | Zbl 1136.35081
,[20] Dispersive estimates for principally normal pseudodifferential operators, Comm. Pure Appl. Math. 58 (2005), 217-284. | MR 2094851 | Zbl 1078.35143
& ,[21] Para-differential calculus and applications to the Cauchy problem for nonlinear systems, Centro di Ricerca Matematica Ennio De Giorgi (CRM) Series 5, Edizioni della Normale, Pisa, 2008. | MR 2418072 | Zbl 1156.35002
,[22] Well-posedness of the water-wave problem with surface tension, J. Math. Pures Appl. 92 (2009), 429-455. | MR 2558419 | Zbl 1190.35186
& ,[23] On the transverse instability of one dimensional capillary-gravity waves, Discrete Contin. Dyn. Syst. Ser. B 13 (2010), 859-872. | MR 2601344 | Zbl 1197.35333
& ,[24] On the three-dimensional Euler equations with a free boundary subject to surface tension, Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005), 753-781. | Numdam | MR 2172858 | Zbl 1148.35071
,[25] Geometry and a priori estimates for free boundary problems of the Euler equation, Comm. Pure Appl. Math. 61 (2008), 698-744. | MR 2388661 | Zbl 1174.76001
& ,[26] A parametrix construction for wave equations with coefficients, Ann. Inst. Fourier (Grenoble) 48 (1998), 797-835. | Numdam | MR 1644105 | Zbl 0974.35068
,[27] Strichartz estimates for a Schrödinger operator with nonsmooth coefficients, Comm. Partial Differential Equations 27 (2002), 1337-1372. | MR 1924470 | Zbl 1010.35015
& ,[28] Strichartz estimates for operators with nonsmooth coefficients and the nonlinear wave equation, Amer. J. Math. 122 (2000), 349-376. | MR 1749052 | Zbl 0959.35125
,[29] Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients. II, Amer. J. Math. 123 (2001), 385-423. | MR 1833146 | Zbl 0988.35037
,[30] Almost global wellposedness of the 2-D full water wave problem, Invent. Math. 177 (2009), 45-135. | MR 2507638 | Zbl 1181.35205
,[31] Global well-posedness of the 3D full water wave problem, preprint arXiv:0910.2473. | Zbl 1221.35304
,