Overconvergent de Rham-Witt cohomology
[Cohomologie surconvergente de de Rham-Witt]
Davis, Christopher ; Langer, Andreas ; Zink, Thomas
Annales scientifiques de l'École Normale Supérieure, Tome 44 (2011), p. 197-262 / Harvested from Numdam

Le but de ce travail est de construire, pour X une variété lisse sur un corps parfait k de caractéristique finie, un complexe de de Rham-Witt surconvergent W Ω X/k comme un sous-complexe convenable du complexe de de Rham-Witt de Deligne-Illusie. Ce complexe qui est fonctoriel en X est un complexe de faisceaux étales et une algèbre différentielle graduée sur l’anneau W (𝒪 X ) des vecteurs de Witt surconvergents. Lorsque X est affine, on démontre qu’il existe un isomorphisme canonique entre la cohomologie de Monsky-Washnitzer et la cohomologie (rationnelle) de de Rham-Witt surconvergente. Finalement on définit pour X quasi-projectif un isomorphisme entre la cohomologie rigide de X et la cohomologie de de Rham-Witt surconvergente rationnelle.

The goal of this work is to construct, for a smooth variety X over a perfect field k of finite characteristic p>0, an overconvergent de Rham-Witt complex W Ω X/k as a suitable subcomplex of the de Rham-Witt complex of Deligne-Illusie. This complex, which is functorial in X, is a complex of étale sheaves and a differential graded algebra over the ring W (𝒪 X ) of overconvergent Witt-vectors. If X is affine one proves that there is an isomorphism between Monsky-Washnitzer cohomology and (rational) overconvergent de Rham-Witt cohomology. Finally we define for a quasiprojective X an isomorphism between the rational overconvergent de Rham-Witt cohomology and the rigid cohomology.

Publié le : 2011-01-01
DOI : https://doi.org/10.24033/asens.2143
Classification:  14F30,  14F40
Mots clés: cohomologie rigide, complexe de de Rham-Witt
@article{ASENS_2011_4_44_2_197_0,
     author = {Davis, Christopher and Langer, Andreas and Zink, Thomas},
     title = {Overconvergent de Rham-Witt cohomology},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     volume = {44},
     year = {2011},
     pages = {197-262},
     doi = {10.24033/asens.2143},
     mrnumber = {2830387},
     zbl = {1236.14025},
     language = {en},
     url = {http://dml.mathdoc.fr/item/ASENS_2011_4_44_2_197_0}
}
Davis, Christopher; Langer, Andreas; Zink, Thomas. Overconvergent de Rham-Witt cohomology. Annales scientifiques de l'École Normale Supérieure, Tome 44 (2011) pp. 197-262. doi : 10.24033/asens.2143. http://gdmltest.u-ga.fr/item/ASENS_2011_4_44_2_197_0/

[1] P. Berthelot, Cohomologie rigide et cohomologie rigide à supports propres, preprint 96-03 de l'université de Rennes, http://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf, 1996.

[2] P. Berthelot, Finitude et pureté cohomologique en cohomologie rigide, Invent. Math. 128 (1997), 329-377. | Zbl 0908.14005

[3] S. Bosch, U. Güntzer & R. Remmert, Non-Archimedean analysis, Grund. Math. Wiss. 261, Springer, 1984. | Zbl 0539.14017

[4] B. Chiarellotto & N. Tsuzuki, Cohomological descent of rigid cohomology for étale coverings, Rend. Sem. Mat. Univ. Padova 109 (2003), 63-215. | Numdam | Zbl 1167.14306

[5] C. Davis, A. Langer & T. Zink, Overconvergent Witt vectors, preprint http://www.math.uci.edu/~davis/DLZOCW.pdf. | Zbl 1261.13013

[6] E. Grosse-Klönne, Rigid analytic spaces with overconvergent structure sheaf, J. reine angew. Math. 519 (2000), 73-95. | Zbl 0945.14013

[7] A. Grothendieck & J. Dieudonné, Éléments de géométrie algébrique, Publ. Math. I.H.É.S. 4, 8, 11, 17, 20, 24, 28, 32 (1960-67). | Zbl 0203.23301

[8] L. Illusie, Complexe de de Rham-Witt et cohomologie cristalline, Ann. Sci. École Norm. Sup. 12 (1979), 501-661. | Numdam | Zbl 0436.14007

[9] K. S. Kedlaya, More étale covers of affine spaces in positive characteristic, J. Algebraic Geom. 14 (2005), 187-192. | MR 2092132 | Zbl 1065.14020

[10] A. Langer & T. Zink, De Rham-Witt cohomology for a proper and smooth morphism, J. Inst. Math. Jussieu 3 (2004), 231-314. | MR 2055710 | Zbl 1100.14506

[11] A. Langer & T. Zink, Gauss-Manin connection via Witt-differentials, Nagoya Math. J. 179 (2005), 1-16. | MR 2164399 | Zbl 1101.14020

[12] S. Lubkin, Generalization of p-adic cohomology: bounded Witt vectors. A canonical lifting of a variety in characteristic p0 back to characteristic zero, Compositio Math. 34 (1977), 225-277. | Numdam | MR 453745 | Zbl 0368.14009

[13] D. Meredith, Weak formal schemes, Nagoya Math. J. 45 (1972), 1-38. | MR 330167 | Zbl 0207.51502

[14] P. Monsky & G. Washnitzer, Formal cohomology. I, Ann. of Math. 88 (1968), 181-217. | MR 248141 | Zbl 0162.52504