On définit les foncteurs de -restriction et -induction sur la catégorie des algèbres de Hecke doublement affines rationnelles cyclotomiques. Ceci donne lieu à un cristal sur l’ensemble des classes d’isomorphismes de modules simples, qui est isomorphe au cristal d’un espace de Fock.
We define the -restriction and -induction functors on the category of the cyclotomic rational double affine Hecke algebras. This yields a crystal on the set of isomorphism classes of simple modules, which is isomorphic to the crystal of a Fock space.
@article{ASENS_2011_4_44_1_147_0, author = {Shan, Peng}, title = {Crystals of Fock spaces and cyclotomic rational double affine Hecke algebras}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, volume = {44}, year = {2011}, pages = {147-182}, doi = {10.24033/asens.2141}, mrnumber = {2760196}, zbl = {1225.17019}, language = {en}, url = {http://dml.mathdoc.fr/item/ASENS_2011_4_44_1_147_0} }
Shan, Peng. Crystals of Fock spaces and cyclotomic rational double affine Hecke algebras. Annales scientifiques de l'École Normale Supérieure, Tome 44 (2011) pp. 147-182. doi : 10.24033/asens.2141. http://gdmltest.u-ga.fr/item/ASENS_2011_4_44_1_147_0/
[1] On the decomposition numbers of the Hecke algebra of , J. Math. Kyoto Univ. 36 (1996), 789-808. | MR 1443748 | Zbl 0888.20011
,[2] Representations of quantum algebras and combinatorics of Young tableaux, University Lecture Series 26, Amer. Math. Soc., 2002. | MR 1911030 | Zbl 1003.17008
,[3] Geometric and unipotent crystals. II. From unipotent bicrystals to crystal bases, in Quantum groups, Contemp. Math. 433, Amer. Math. Soc., 2007, 13-88. | MR 2349617 | Zbl 1154.14035
& ,[4] Parabolic induction and restriction functors for rational Cherednik algebras, Selecta Math. (N.S.) 14 (2009), 397-425. | Zbl 1226.20002
& ,[5] Towards spetses. I, Transform. Groups 4 (1999), 157-218. | Zbl 0972.20024
, & ,[6] Complex reflection groups, braid groups, Hecke algebras, J. reine angew. Math. 500 (1998), 127-190. | Zbl 0921.20046
, & ,[7] Derived equivalences for symmetric groups and -categorification, Ann. of Math. 167 (2008), 245-298. | Zbl 1144.20001
& ,[8] Noncommutative deformations of Kleinian singularities, Duke Math. J. 92 (1998), 605-635. | Zbl 0974.16007
& ,[9] Methods of representation theory. Vol. II, with applications to finite groups and orders, Pure and Applied Mathematics, John Wiley & Sons Inc., 1987. | Zbl 0616.20001
& ,[10] On the category for rational Cherednik algebras, Invent. Math. 154 (2003), 617-651. | Zbl 1071.20005
, , & ,[11] Combinatorics of representations of at , Comm. Math. Phys. 136 (1991), 543-566. | Zbl 0749.17015
, , & ,[12] On holonomic systems of microdifferential equations. III. Systems with regular singularities, Publ. Res. Inst. Math. Sci. 17 (1981), 813-979. | Zbl 0505.58033
& ,[13] Blocks of cyclotomic Hecke algebras, Adv. Math. 216 (2007), 854-878. | Zbl 1156.20006
& ,[14] -Schur algebras and complex reflection groups, Mosc. Math. J. 8 (2008), 119-158. | MR 2422270 | Zbl 1213.20007
,[15] 2-Kac-Moody algebras, preprint arXiv:0812.5023.
,[16] Canonical bases of higher-level -deformed Fock spaces and Kazhdan-Lusztig polynomials, in Physical combinatorics (Kyoto, 1999), Progr. Math. 191, Birkhäuser, 2000, 249-299. | MR 1768086 | Zbl 0963.17012
,[17] A conjecture for -decomposition matrices of cyclotomic -Schur algebras, J. Algebra 304 (2006), 419-456. | MR 2256400 | Zbl 1130.20009
,