On démontre une conjecture de Kottwitz et Rapoport sur une réciproque à l'inégalité de Mazur pour tout groupe (connexe) réductif, déployé ou quasi-déployé non-ramifié. Nos résultats sont liés à la non-vacuité de certaines variétés de Deligne-Lusztig affines.
We prove a conjecture of Kottwitz and Rapoport which implies a converse to Mazur's Inequality for all (connected) split and quasi-split unramified reductive groups. Our results are related to the non-emptiness of certain affine Deligne-Lusztig varieties.
@article{ASENS_2010_4_43_6_1017_0, author = {Gashi, Q\"endrim R.}, title = {On a conjecture of Kottwitz and Rapoport}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, volume = {43}, year = {2010}, pages = {1017-1038}, doi = {10.24033/asens.2138}, mrnumber = {2778454}, zbl = {1225.14037}, language = {en}, url = {http://dml.mathdoc.fr/item/ASENS_2010_4_43_6_1017_0} }
Gashi, Qëndrim R. On a conjecture of Kottwitz and Rapoport. Annales scientifiques de l'École Normale Supérieure, Tome 43 (2010) pp. 1017-1038. doi : 10.24033/asens.2138. http://gdmltest.u-ga.fr/item/ASENS_2010_4_43_6_1017_0/
[1] A local trace formula, Publ. Math. I.H.É.S. 73 (1991), 5-96. | Numdam | MR 1114210 | Zbl 0741.22013
,[2] Lie groups and Lie algebras. Chapters 4-6, Elements of Mathematics, Springer, 2002. | MR 1890629 | Zbl 0983.17001
,[3] Lie groups and Lie algebras, Chapters 7-9, Elements of Mathematics, Springer, 2005. | MR 2109105 | Zbl 1139.17002
,[4] A vanishing result for toric varieties associated with root systems, Albanian J. Math. 1 (2007), 235-244. | MR 2367216 | Zbl 1133.14054
,[5] Vanishing results for toric varieties associated to and , Transform. Groups 13 (2008), 149-171. | MR 2421320 | Zbl 1160.14039
,[6] On dominance and minuscule Weyl group elements, preprint arXiv:0908.1091. | MR 2772538 | Zbl 1239.20045
& ,[7] Affine Deligne-Lusztig varieties in affine flag varieties, preprint arXiv:0805.0045. | Zbl 1229.14036
, , & ,[8] Dimensions of some affine Deligne-Lusztig varieties, Ann. Sci. École Norm. Sup. 39 (2006), 467-511. | Numdam | MR 2265676 | Zbl 1108.14035
, , & ,[9] Isocrystals with additional structure, Compositio Math. 56 (1985), 201-220. | Numdam | MR 809866 | Zbl 0597.20038
,[10] On the Hodge-Newton decomposition for split groups, Int. Math. Res. Not. 2003 (2003), 1433-1447. | MR 1976046 | Zbl 1074.14016
,[11] On the existence of -crystals, Comment. Math. Helv. 78 (2003), 153-184. | MR 1966756 | Zbl 1126.14023
& ,[12] A converse to Mazur's inequality for split classical groups, J. Inst. Math. Jussieu 3 (2004), 165-183. | MR 2055708 | Zbl 1054.14059
,[13] A converse to Mazur's inequality for split classical groups, Thèse, University of Chicago, 2004. | MR 2055708 | Zbl 1054.14059
,[14] Frobenius and the Hodge filtration, Bull. Amer. Math. Soc. 78 (1972), 653-667. | MR 330169 | Zbl 0258.14006
,[15] Frobenius and the Hodge filtration (estimates), Ann. of Math. 98 (1973), 58-95. | MR 321932 | Zbl 0261.14005
,[16] Reflection processes on graphs and Weyl groups, J. Combin. Theory Ser. A 53 (1990), 128-142. | MR 1031617 | Zbl 0741.05035
,[17] A positivity property of the Satake isomorphism, Manuscripta Math. 101 (2000), 153-166. | MR 1742251 | Zbl 0941.22006
,[18] A guide to the reduction modulo of Shimura varieties, Astérisque 298 (2005), 271-318. | MR 2141705 | Zbl 1084.11029
,[19] On the classification and specialization of -isocrystals with additional structure, Compositio Math. 103 (1996), 153-181. | Numdam | MR 1411570 | Zbl 0874.14008
& ,[20] Linear algebraic groups, 2nd éd., Progress in Mathematics, Birkhäuser, 2006. | MR 632835 | Zbl 0927.20024
,[21] The partial order of dominant weights, Adv. Math. 136 (1998), 340-364. | MR 1626860 | Zbl 0916.06001
,[22] Minuscule elements of Weyl groups, J. Algebra 235 (2001), 722-743. | MR 1805477 | Zbl 0973.17034
,[23] The dimension of some affine Deligne-Lusztig varieties, Ann. Sci. École Norm. Sup. 39 (2006), 513-526. | Numdam | MR 2265677 | Zbl 1108.14036
,[24] Existence de -cristaux avec structures supplémentaires, Adv. Math. 190 (2005), 196-224. | MR 2104909 | Zbl 1104.14013
,