A Chen model for mapping spaces and the surface product
[Un modèle de Chen pour les espaces fonctionnels et le produit surfacique]
Ginot, Grégory ; Tradler, Thomas ; Zeinalian, Mahmoud
Annales scientifiques de l'École Normale Supérieure, Tome 43 (2010), p. 811-881 / Harvested from Numdam

Dans cet article, on étend le formalisme des intégrales itérées de Chen aux complexes de Hochschild supérieurs. Ces derniers sont des complexes de (co)chaînes modelés sur un espace (simplicial) de la même manière que le complexe de Hochschild classique est modelé sur le cercle. On en déduit des modèles algébriques pour les espaces fonctionnels que l'on utilise pour étudier le produit surfacique. Ce produit, défini sur l'homologie des espaces de fonctions continues de surfaces (de genre quelconque) dans une variété, est un analogue du produit de Chas-Sullivan sur les espaces de lacets en topologie des cordes. En particulier, on en déduit que le produit surfacique est un invariant homotopique. On démontre également un théorème du type Hochschild-Kostant-Rosenberg pour les complexes de Hochschild modelés sur les surfaces qui permet d'obtenir des formules explicites pour le produit surfacique des sphères de dimension impaire ainsi que pour les groupes de Lie.

We develop a machinery of Chen iterated integrals for higher Hochschild complexes. These are complexes whose differentials are modeled on an arbitrary simplicial set much in the same way the ordinary Hochschild differential is modeled on the circle. We use these to give algebraic models for general mapping spaces and define and study the surface product operation on the homology of mapping spaces of surfaces of all genera into a manifold. This is an analogue of the loop product in string topology. As an application, we show this product is homotopy invariant. We prove Hochschild-Kostant-Rosenberg type theorems and use them to give explicit formulae for the surface product of odd spheres and Lie groups.

Publié le : 2010-01-01
DOI : https://doi.org/10.24033/asens.2134
Classification:  18G60,  55P50,  18G30,  55P62
Mots clés: topologie des cordes, homologie de Hochschild, cohomologie de Hochschild, intégrales de Chen, espaces fonctionnels, produit surfacique
@article{ASENS_2010_4_43_5_811_0,
     author = {Ginot, Gr\'egory and Tradler, Thomas and Zeinalian, Mahmoud},
     title = {A Chen model for mapping spaces and the surface product},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     volume = {43},
     year = {2010},
     pages = {811-881},
     doi = {10.24033/asens.2134},
     mrnumber = {2721877},
     zbl = {1234.55009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/ASENS_2010_4_43_5_811_0}
}
Ginot, Grégory; Tradler, Thomas; Zeinalian, Mahmoud. A Chen model for mapping spaces and the surface product. Annales scientifiques de l'École Normale Supérieure, Tome 43 (2010) pp. 811-881. doi : 10.24033/asens.2134. http://gdmltest.u-ga.fr/item/ASENS_2010_4_43_5_811_0/

[1] K. Behrend, G. Ginot, B. Noohi & P. Xu, String topology for stacks, preprint arXiv:math/0712.3857. | MR 2977576 | Zbl 1253.55007

[2] M. Bökstedt, W. C. Hsiang & I. Madsen, The cyclotomic trace and algebraic K-theory of spaces, Invent. Math. 111 (1993), 465-539. | MR 1202133 | Zbl 0804.55004

[3] E. H. J. Brown & R. H. Szczarba, On the rational homotopy type of function spaces, Trans. Amer. Math. Soc. 349 (1997), 4931-4951. | MR 1407482 | Zbl 0927.55012

[4] D. Burghelea & M. Vigué-Poirrier, Cyclic homology of commutative algebras. I, in Algebraic topology-rational homotopy (Louvain-la-Neuve, 1986), Lecture Notes in Math. 1318, Springer, 1988, 51-72. | MR 952571 | Zbl 0666.13007

[5] M. Chas & D. Sullivan, String topology, preprint arXiv:9911159.

[6] K. T. Chen, Iterated integrals of differential forms and loop space homology, Ann. of Math. 97 (1973), 217-246. | Zbl 0227.58003

[7] K. T. Chen, Iterated path integrals, Bull. Amer. Math. Soc. 83 (1977), 831-879. | Zbl 0389.58001

[8] R. L. Cohen & J. D. S. Jones, A homotopy theoretic realization of string topology, Math. Ann. 324 (2002), 773-798. | Zbl 1025.55005

[9] R. L. Cohen & A. A. Voronov, Notes on string topology, in String topology and cyclic homology, Adv. Courses Math. CRM Barcelona, Birkhäuser, 2006, 1-95. | Zbl 1089.57002

[10] Y. Félix, S. Halperin & J.-C. Thomas, Rational homotopy theory, Graduate Texts in Math. 205, Springer, 2001. | Zbl 0961.55002

[11] Y. Félix & J.-C. Thomas, Rational BV-algebra in string topology, Bull. Soc. Math. France 136 (2008), 311-327. | Numdam | Zbl 1160.55006

[12] Y. Felix, J.-C. Thomas & M. Vigué-Poirrier, The Hochschild cohomology of a closed manifold, Publ. Math. Inst. Hautes Études Sci. 99 (2004), 235-252. | Numdam | Zbl 1060.57019

[13] Y. Félix, J.-C. Thomas & M. Vigué-Poirrier, Rational string topology, J. Eur. Math. Soc. 9 (2007), 123-156. | Zbl 1200.55015

[14] E. Getzler, J. D. S. Jones & S. Petrack, Differential forms on loop spaces and the cyclic bar complex, Topology 30 (1991), 339-371. | Zbl 0729.58004

[15] G. Ginot, Higher order Hochschild cohomology, C. R. Math. Acad. Sci. Paris 346 (2008), 5-10. | Zbl 1157.53042

[16] P. G. Goerss & J. F. Jardine, Simplicial homotopy theory, Progress in Math. 174, Birkhäuser, 1999. | MR 1711612 | Zbl 0949.55001

[17] T. G. Goodwillie, Relative algebraic K-theory and cyclic homology, Ann. of Math. 124 (1986), 347-402. | MR 855300 | Zbl 0627.18004

[18] A. Haefliger, Rational homotopy of the space of sections of a nilpotent bundle, Trans. Amer. Math. Soc. 273 (1982), 609-620. | MR 667163 | Zbl 0508.55019

[19] P. Hu, Higher string topology on general spaces, Proc. London Math. Soc. 93 (2006), 515-544. | MR 2251161 | Zbl 1103.55008

[20] P. Lambrechts & D. Stanley, Poincaré duality and commutative differential graded algebras, Ann. Sci. Éc. Norm. Supér. 41 (2008), 495-509. | Numdam | MR 2489632 | Zbl 1172.13009

[21] J.-L. Loday, Cyclic homology, Grund. Math. Wiss. 301, Springer, 1992. | MR 1217970 | Zbl 0780.18009

[22] S. Maclane, Homology, first éd., Grundl. der math. Wiss. 114, Springer, 1967. | MR 349792 | Zbl 0133.26502

[23] R. Mccarthy, On operations for Hochschild homology, Comm. Algebra 21 (1993), 2947-2965. | MR 1222750 | Zbl 0809.18009

[24] F. Patras & J.-C. Thomas, Cochain algebras of mapping spaces and finite group actions, Topology Appl. 128 (2003), 189-207. | MR 1956614 | Zbl 1027.55017

[25] T. Pirashvili, Hodge decomposition for higher order Hochschild homology, Ann. Sci. École Norm. Sup. 33 (2000), 151-179. | Numdam | MR 1755114 | Zbl 0957.18004

[26] D. Quillen, Rational homotopy theory, Ann. of Math. 90 (1969), 205-295. | MR 258031 | Zbl 0191.53702

[27] D. Sullivan, Infinitesimal computations in topology, Publ. Math. I.H.É.S. 47 (1977), 269-331. | Numdam | MR 646078 | Zbl 0374.57002

[28] D. Sullivan, Sigma models and string topology, in Graphs and patterns in mathematics and theoretical physics, Proc. Sympos. Pure Math. 73, Amer. Math. Soc., 2005, 1-11. | MR 2131009 | Zbl 1080.53085