Kinetic equations with Maxwell boundary conditions
[Équations cinétiques avec conditions aux limites de Maxwell]
Mischler, Stéphane
Annales scientifiques de l'École Normale Supérieure, Tome 43 (2010), p. 719-760 / Harvested from Numdam

Nous montrons la stabilité des solutions renormalisées au sens de DiPerna-Lions pour des équations cinétiques avec conditions initiale et aux limites. La condition aux limites (qui peut être non linéaire) est partiellement diffuse et est réalisée (c'est-à-dire qu'elle n'est pas relaxée). Les techniques que nous introduisons sont illustrées sur l'équation de Fokker-Planck-Boltzmann et le système de Vlasov-Poisson-Fokker-Planck ainsi que pour des conditions aux limites linéaires sur l'équation de Boltzmann et le système de Vlasov-Poisson. Les démonstrations utilisent des théorèmes de trace du type de ceux introduits par l'auteur pour les équations de Vlasov, des résultats d'analyse fonctionnelle sur les convergences faible-faible (la convergence renormalisée et la convergence au sens du biting lemma), ainsi que l'information de Darrozès-Guiraud d'une manière essentielle.

We prove global stability results of DiPerna-Lions renormalized solutions for the initial boundary value problem associated to some kinetic equations, from which existence results classically follow. The (possibly nonlinear) boundary conditions are completely or partially diffuse, which includes the so-called Maxwell boundary conditions, and we prove that it is realized (it is not only a boundary inequality condition as it has been established in previous works). We are able to deal with Boltzmann, Vlasov-Poisson and Fokker-Planck type models. The proofs use some trace theorems of the kind previously introduced by the author for the Vlasov equations, new results concerning weak-weak convergence (the renormalized convergence and the biting L 1 -weak convergence), as well as the Darrozès-Guiraud information in a crucial way.

Publié le : 2010-01-01
DOI : https://doi.org/10.24033/asens.2132
Classification:  76P05,  82B40,  82C40,  82D05
Mots clés: Équations de Vlasov-Poisson, Boltzmann et Fokker-Planck, réflexion de Maxwell ou diffuse, réflexion non linéaire, information de Darrozès-Guiraud, théorèmes de trace, convergence renormalisée, convergence au sens de Chacon (biting lemma), lemme de Dunford-Pettis
@article{ASENS_2010_4_43_5_719_0,
     author = {Mischler, St\'ephane},
     title = {Kinetic equations with Maxwell boundary conditions},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     volume = {43},
     year = {2010},
     pages = {719-760},
     doi = {10.24033/asens.2132},
     mrnumber = {2721875},
     zbl = {1228.35249},
     language = {en},
     url = {http://dml.mathdoc.fr/item/ASENS_2010_4_43_5_719_0}
}
Mischler, Stéphane. Kinetic equations with Maxwell boundary conditions. Annales scientifiques de l'École Normale Supérieure, Tome 43 (2010) pp. 719-760. doi : 10.24033/asens.2132. http://gdmltest.u-ga.fr/item/ASENS_2010_4_43_5_719_0/

[1] N. B. Abdallah, Weak solutions of the initial-boundary value problem for the Vlasov-Poisson system, Math. Methods Appl. Sci. 17 (1994), 451-476. | MR 1274153 | Zbl 0806.35172

[2] E. Acerbi & N. Fusco, Semicontinuity problems in the calculus of variations, Arch. Rational Mech. Anal. 86 (1984), 125-145. | MR 751305 | Zbl 0565.49010

[3] V. I. Agoshkov, The existence of traces of functions in spaces used in problems of transport theory, Dokl. Akad. Nauk SSSR 288 (1986), 265-269. | MR 843433 | Zbl 0636.46038

[4] R. Alexandre, Weak solutions of the Vlasov-Poisson initial-boundary value problem, Math. Methods Appl. Sci. 16 (1993), 587-607. | MR 1233042 | Zbl 0786.35014

[5] L. Arkeryd & C. Cercignani, A global existence theorem for the initial-boundary value problem for the Boltzmann equation when the boundaries are not isothermal, Arch. Rational Mech. Anal. 125 (1993), 271-287. | MR 1245073 | Zbl 0789.76075

[6] L. Arkeryd & A. Heintz, On the solvability and asymptotics of the Boltzmann equation in irregular domains, Comm. Partial Differential Equations 22 (1997), 2129-2152. | MR 1629463 | Zbl 0896.45007

[7] L. Arkeryd & N. Maslova, On diffuse reflection at the boundary for the Boltzmann equation and related equations, J. Statist. Phys. 77 (1994), 1051-1077. | MR 1301931 | Zbl 0839.76073

[8] L. Arkeryd & A. Nouri, Boltzmann asymptotics with diffuse reflection boundary conditions, Monatsh. Math. 123 (1997), 285-298. | MR 1448572 | Zbl 0877.76063

[9] J. M. Ball & F. Murat, Remarks on Chacon's biting lemma, Proc. Amer. Math. Soc. 107 (1989), 655-663. | MR 984807 | Zbl 0678.46023

[10] C. Bardos, Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d'approximation; application à l'équation de transport, Ann. Sci. École Norm. Sup. 3 (1970), 185-233. | Numdam | MR 274925 | Zbl 0202.36903

[11] R. Beals & V. Protopopescu, Abstract time-dependent transport equations, J. Math. Anal. Appl. 121 (1987), 370-405. | MR 872231 | Zbl 0657.45007

[12] A. Bogdanov, V. Dubrovsky, M. Krutykov, D. Kulginov & V. Strelchenya, Interaction of gases with surfaces, Lecture Notes in Physics m25, Springer, 1995.

[13] L. L. Bonilla, J. A. Carrillo & J. Soler, Asymptotic behavior of an initial boundary value problem for the Vlasov-Poisson-Fokker-Planck system, J. Funct. Anal. 111 (1993), 239-258. | Zbl 0888.35018

[14] F. Bouchut, Existence and uniqueness of a global smooth solution for the Vlasov-Poisson-Fokker-Planck system in three dimensions, J. Funct. Anal. 111 (1993), 239-258. | MR 1200643 | Zbl 0777.35059

[15] F. Bouchut, Smoothing effect for the non-linear Vlasov-Poisson-Fokker-Planck system, J. Differential Equations 122 (1995), 225-238. | MR 1355890 | Zbl 0840.35053

[16] F. Bouchut & J. Dolbeault, On long time asymptotics of the Vlasov-Fokker-Planck equation and of the Vlasov-Poisson-Fokker-Planck system with Coulombic and Newtonian potentials, Differential Integral Equations 8 (1995), 487-514. | MR 1306570 | Zbl 0830.35129

[17] J. K. Brooks & R. V. Chacon, Continuity and compactness of measures, Adv. in Math. 37 (1980), 16-26. | MR 585896 | Zbl 0463.28003

[18] M. Cannone & C. Cercignani, A trace theorem in kinetic theory, Appl. Math. Lett. 4 (1991), 63-67. | MR 1136615 | Zbl 0744.45005

[19] J. A. Carrillo, Global weak solutions for the initial-boundary-value problems to the Vlasov-Poisson-Fokker-Planck system, Math. Methods Appl. Sci. 21 (1998), 907-938. | MR 1634851 | Zbl 0910.35101

[20] J. A. Carrillo & J. Soler, On the initial value problem for the Vlasov-Poisson-Fokker-Planck system with initial data in L p spaces, Math. Methods Appl. Sci. 18 (1995), 825-839. | MR 1343393 | Zbl 0829.35096

[21] J. A. Carrillo & J. Soler, On the Vlasov-Poisson-Fokker-Planck equations with measures in Morrey spaces as initial data, J. Math. Anal. Appl. 207 (1997), 475-495. | MR 1438925 | Zbl 0876.35085

[22] J. A. Carrillo, J. Soler & J. L. Vázquez, Asymptotic behaviour and self-similarity for the three-dimensional Vlasov-Poisson-Fokker-Planck system, J. Funct. Anal. 141 (1996), 99-132. | MR 1414375 | Zbl 0873.35066

[23] F. Castella, The Vlasov-Poisson-Fokker-Planck system with infinite kinetic energy, Indiana Univ. Math. J. 47 (1998), 939-964. | MR 1665725 | Zbl 0926.35004

[24] P. Cembranos & J. Mendoza, Banach spaces of vector-valued functions, Lecture Notes in Math. 1676, Springer, 1997. | MR 1489231 | Zbl 0902.46017

[25] C. Cercignani, The Boltzmann equation and its applications, Applied Mathematical Sciences 67, Springer, 1988. | MR 1313028 | Zbl 0646.76001

[26] C. Cercignani, Scattering kernels for gas/surface interaction, in Proceeding of the workshop on hypersonic flows for reentry problems, INRIA, 1990, 9-29. | Zbl 0892.76076

[27] C. Cercignani, On the initial-boundary value problem for the Boltzmann equation, Arch. Rational Mech. Anal. 116 (1992), 307-315. | MR 1132764 | Zbl 0753.76151

[28] C. Cercignani, Initial-boundary value problems for the Boltzmann equation, in Proceedings of the Second International Workshop on Nonlinear Kinetic Theories and Mathematical Aspects of Hyperbolic Systems (Sanremo, 1994), 25, 1996, 425-436. | Zbl 0895.76082

[29] C. Cercignani, R. Illner & M. Pulvirenti, The mathematical theory of dilute gases, Applied Mathematical Sciences 106, Springer, 1994. | Zbl 0813.76001

[30] C. Cercignani, M. Lampis & A. Lentati, A new scattering kernel in kinetic theory of gases, Transport Theory Statist. Phys. 24 (1995), 1319-1336. | Zbl 0874.76076

[31] M. Cessenat, Théorèmes de trace L p pour des espaces de fonctions de la neutronique, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), 831-834, 300 (1985), 89-92. | Zbl 0568.46030

[32] S. Chandresekhar, Stochastic problems in physics and astronomy, Rev. Modern Phys. 15 (1943), 1-89. | Zbl 0061.46403

[33] R. Coifman, P.-L. Lions, Y. Meyer & S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl. 72 (1993), 247-286. | Zbl 0864.42009

[34] J. S. Darrozès & J. P. Guiraud, Généralisation formelle du théorème H en présence de parois, C. R. Acad. Sci. Paris 262 (1966), 368-371.

[35] R. Diperna & P.-L. Lions, On the Fokker-Planck-Boltzmann equation, Comm. Math. Phys. 120 (1988), 1-23. | Zbl 0671.35068

[36] R. Diperna & P.-L. Lions, Solutions globales d'équations du type Vlasov-Poisson, C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), 655-658. | MR 967806 | Zbl 0682.35022

[37] R. Diperna & P.-L. Lions, On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann. of Math. 130 (1989), 321-366. | MR 1014927 | Zbl 0698.45010

[38] R. Diperna & P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math. 98 (1989), 511-547. | MR 1022305 | Zbl 0696.34049

[39] R. Diperna & P.-L. Lions, Global solutions of Boltzmann's equation and the entropy inequality, Arch. Rational Mech. Anal. 114 (1991), 47-55. | MR 1088276 | Zbl 0724.45011

[40] R. Diperna, P.-L. Lions & Y. Meyer, L p regularity of velocity averages, Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (1991), 271-287. | Numdam | MR 1127927 | Zbl 0763.35014

[41] V. F. Gaposhkin, Convergences and limit theorems for sequences of random variables, Theory of Probability App. 17 (1979), 379-400. | Zbl 0273.60010

[42] F. Golse, P.-L. Lions, B. Perthame & R. Sentis, Regularity of the moments of the solution of a transport equation, J. Funct. Anal. 76 (1988), 110-125. | MR 923047 | Zbl 0652.47031

[43] T. Goudon, Existence of solutions of transport equations with nonlinear boundary conditions, European J. Mech. B Fluids 16 (1997), 557-574. | MR 1458980 | Zbl 0881.35115

[44] T. Goudon, Sur quelques questions relatives à la théorie cinétique des gaz et à l'équation de Boltzmann, thèse de doctorat, Université de Bordeaux, 1997.

[45] W. Greenberg, C. Van Der Mee & V. Protopopescu, Boundary value problems in abstract kinetic theory, Operator Theory: Advances and Applications 23, Birkhäuser, 1987. | MR 896904 | Zbl 0624.35003

[46] Y. Guo, Global weak solutions of the Vlasov-Maxwell system with boundary conditions, Comm. Math. Phys. 154 (1993), 245-263. | MR 1224079 | Zbl 0787.35072

[47] K. Hamdache, Initial-boundary value problems for the Boltzmann equation: global existence of weak solutions, Arch. Rational Mech. Anal. 119 (1992), 309-353. | MR 1179690 | Zbl 0777.76084

[48] A. Heintz, Boundary value problems for nonlinear Boltzmann equation in domains with irregular boundaries, Thèse, Leningrad State University, 1986.

[49] L. Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147-171. | MR 222474 | Zbl 0156.10701

[50] M. I. Kadec & A. Pełczyński, Bases, lacunary sequences and complemented subspaces in the spaces L p , Studia Math. 21 (1961/1962), 161-176. | MR 152879 | Zbl 0102.32202

[51] I. Kuščer, Phenomenological aspects of gas-surface interaction, in Fundamental problems in statistical mechanics, IV (Proc. Fourth Internat. Summer School, Jadwisin, 1977), Ossolineum, 1978, 439-467. | MR 521726

[52] P.-L. Lions, Compactness in Boltzmann's equation via Fourier integral operators and applications. I, II, III, J. Math. Kyoto Univ. 34 (1994), 391-427, 429-461, 539-584. | MR 1284432 | Zbl 0831.35139

[53] P.-L. Lions, Conditions at infinity for Boltzmann's equation, Comm. Partial Differential Equations 19 (1994), 335-367. | MR 1257008 | Zbl 0799.35210

[54] J. C. Maxwell, On stresses in rarefied gases arising from inequalities of temperature, Phil. Trans. Roy. Soc. London 170 (1879), Appendix 231-256. | JFM 11.0777.01

[55] S. Mischler, On the initial boundary value problem for the Vlasov-Poisson-Boltzmann system, Comm. Math. Phys. 210 (2000), 447-466. | MR 1776840 | Zbl 0983.45007

[56] S. Mischler, On the trace problem for solutions of the Vlasov equation, Comm. Partial Differential Equations 25 (2000), 1415-1443. | MR 1765137 | Zbl 0953.35028

[57] R. Pettersson, On solutions to the linear Boltzmann equation with general boundary conditions and infinite-range forces, J. Statist. Phys. 59 (1990), 403-440. | MR 1049973 | Zbl 1083.82530

[58] F. Poupaud, Boundary value problems for the stationary Vlasov-Poisson system, C. R. Acad. Sci. Paris 311 (1990), 307-312. | Zbl 0711.35139

[59] K. Rein & J. Weckler, Generic global classical solutions of the Vlasov-Fokker-Planck-Poisson system in three dimensions, J. Differential Equations 99 (1992), 59-77. | MR 1178396 | Zbl 0810.35090

[60] M. Saadoune & M. Valadier, Extraction of a “good” subsequence from a bounded sequence of integrable functions, J. Convex Anal. 2 (1995), 345-357. | MR 1363378 | Zbl 0833.46018

[61] J. Soler, Asymptotic behaviour for the Vlasov-Poisson-Foker-Planck system, Nonlinear Anal. 30 (1997), 5217-5228. | MR 1726024 | Zbl 0895.35082

[62] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton Univ. Press, 1970. | MR 290095 | Zbl 0207.13501

[63] L. Tartar, Compensated compactness and applications to partial differential equations, in Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, Res. Notes in Math. 39, Pitman, 1979, 136-212. | MR 584398 | Zbl 0437.35004

[64] S. Ukai, Solutions of the Boltzmann equation, in Patterns and waves, Stud. Math. Appl. 18, North-Holland, 1986, 37-96. | MR 882376 | Zbl 0633.76078

[65] H. D. J. Victory & B. P. O'Dwyer, On classical solutions of Vlasov-Poisson-Fokker-Planck systems, Indiana Univ. Math. J. 39 (1990), 105-156. | MR 1052014 | Zbl 0674.60097

[66] C. Villani, Contribution à l'étude mathématique des équations de Boltzmann et de Landau en théorie cinétique des gaz et des plasmas, thèse de doctorat, Université Paris Dauphine, 1998.

[67] J. Voigt, Functional analytic treatment of the initial boundary value problem for collisionless gases, Habilitationsschrift, Universität München, 1980.

[68] J. Weckler, On the initial-boundary-value problem for the Vlasov-Poisson system: existence of weak solutions and stability, Arch. Rational Mech. Anal. 130 (1995), 145-161. | MR 1338454 | Zbl 0828.76097

[69] L. C. Young, Lectures on the calculus of variations and optimal control theory, W. B. Saunders Co., 1969. | MR 259704 | Zbl 0177.37801