Dans [11], A. Givental a introduit une action de groupe sur l’espace des potentiels de Gromov-Witten et a prouvé sa transitivité sur les potentiels semi-simples. Dans [24, 25], Y.-P. Lee a montré, modulo certains résultats annoncés par C. Teleman, que cette action préserve les relations tautologiques dans l’anneau de cohomologie de l’espace des modules des courbes stables épointées. Ici nous donnons une démonstration plus simple de ce résultat. Il en découle, entre autres, que si dans une théorie de Gromov-Witten semi-simple on peut exprimer n’importe quel corrélateur en fonction des corrélateurs de genre 0 en utilisant uniquement des relations tautologiques, alors le potentiel de Gromov-Witten géométrique coïncide avec le potentiel construit via l’action du groupe de Givental. Ces résultats suffisent pour démontrer une conjecture de Witten de 1991 qui relie la hiérarchie -KdV à la théorie de l’intersection sur l’espace des structures -spin sur les courbes stables. Nous utilisons pour cela la compatibilité entre la construction de Givental dans ce cas et la conjecture de Witten, compatibilité établie dans [10] par Givental lui-même.
In [11], A. Givental introduced a group action on the space of Gromov-Witten potentials and proved its transitivity on the semi-simple potentials. In [24, 25], Y.-P. Lee showed, modulo certain results announced by C. Teleman, that this action respects the tautological relations in the cohomology ring of the moduli space of stable pointed curves. Here we give a simpler proof of this result. In particular, it implies that in any semi-simple Gromov-Witten theory where arbitrary correlators can be expressed in genus 0 correlators using only tautological relations, the geometric Gromov-Witten potential coincides with the potential constructed via Givental’s group action. As the most important application we show that our results suffice to deduce the statement of a 1991 Witten conjecture relating the -KdV hierarchy to the intersection theory on the space of -spin structures on stable curves. We use the fact that Givental’s construction is, in this case, compatible with Witten’s conjecture, as Givental himself showed in [10].
@article{ASENS_2010_4_43_4_621_0, author = {Faber, Carel and Shadrin, Sergey and Zvonkine, Dimitri}, title = {Tautological relations and the $r$-spin Witten conjecture}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, volume = {43}, year = {2010}, pages = {621-658}, doi = {10.24033/asens.2130}, mrnumber = {2722511}, zbl = {1203.53090}, language = {en}, url = {http://dml.mathdoc.fr/item/ASENS_2010_4_43_4_621_0} }
Faber, Carel; Shadrin, Sergey; Zvonkine, Dimitri. Tautological relations and the $r$-spin Witten conjecture. Annales scientifiques de l'École Normale Supérieure, Tome 43 (2010) pp. 621-658. doi : 10.24033/asens.2130. http://gdmltest.u-ga.fr/item/ASENS_2010_4_43_4_621_0/
[1] Moduli of twisted spin curves, Proc. Amer. Math. Soc. 131 (2003), 685-699 (electronic). | MR 1937405 | Zbl 1037.14008
& ,[2] Moduli of roots of line bundles on curves, Trans. Amer. Math. Soc. 359 (2007), 3733-3768 (electronic). | MR 2302513 | Zbl 1140.14022
, & ,[3] The Witten top Chern class via -theory, J. Algebraic Geom. 15 (2006), 681-707. | MR 2237266 | Zbl 1117.14008
,[4] Stable twisted curves and their -spin structures, preprint arXiv:math.AG/0603687. | Numdam | MR 2445829 | Zbl 1179.14028
,[5] Bi-Hamiltonian hierarchies in D topological field theory at one-loop approximation, Comm. Math. Phys. 198 (1998), 311-361. | MR 1672512 | Zbl 0923.58060
& ,[6] Logarithmic series and Hodge integrals in the tautological ring, Michigan Math. J. 48 (2000), 215-252. | MR 1786488 | Zbl 1090.14005
& ,[7] Relative maps and tautological classes, J. Eur. Math. Soc. (JEMS) 7 (2005), 13-49. | MR 2120989 | Zbl 1084.14054
& ,[8] Semisimple Frobenius structures at higher genus, Int. Math. Res. Not. 2001 (2001), 1265-1286. | MR 1866444 | Zbl 1074.14532
,[9] Symplectic geometry of Frobenius structures, Mosc. Math. J. 1 (2001), 551-568. | Zbl 1008.53072
,[10] singularities and KdV hierarchies, Mosc. Math. J. 3 (2003), 475-505, 743. | MR 2025270 | Zbl 1054.14067
,[11] Gromov-Witten invariants and quantization of quadratic hamiltonians, in Frobenius manifolds, Aspects Math. E36, Vieweg, 2004, 91-112. | Zbl 1008.53072
,[12] Constructions of nontautological classes on moduli spaces of curves, Michigan Math. J. 51 (2003), 93-109. | MR 1960923 | Zbl 1079.14511
& ,[13] On the tautological ring of , Turkish J. Math. 25 (2001), 237-243. | MR 1829089 | Zbl 1040.14007
& ,[14] Mapping class groups and moduli spaces of curves, in Algebraic geometry-Santa Cruz 1995, Proc. Sympos. Pure Math. 62, Amer. Math. Soc., 1997, 97-142. | MR 1492535 | Zbl 0914.14013
& ,[15] Topological recursive relations in , Invent. Math. 148 (2002), 627-658. | MR 1908062 | Zbl 1056.14076
,[16] Geometry of the moduli of higher spin curves, Internat. J. Math. 11 (2000), 637-663. | MR 1780734 | Zbl 1094.14504
,[17] Tensor products of Frobenius manifolds and moduli spaces of higher spin curves, in Conférence Moshé Flato 1999, Vol. II (Dijon), Math. Phys. Stud. 22, Kluwer Acad. Publ., 2000, 145-166. | MR 1805911 | Zbl 0988.81120
, & ,[18] Gravitational descendants and the moduli space of higher spin curves, in Advances in algebraic geometry motivated by physics (Lowell, MA, 2000), Contemp. Math. 276, Amer. Math. Soc., 2001, 167-177. | MR 1837117 | Zbl 0986.81105
, & ,[19] Moduli spaces of higher spin curves and integrable hierarchies, Compositio Math. 126 (2001), 157-212. | MR 1827643 | Zbl 1015.14028
, & ,[20] Spin Gromov-Witten invariants, Comm. Math. Phys. 259 (2005), 511-543. | MR 2174415 | Zbl 1094.14042
, & ,[21] Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys. 147 (1992), 1-23. | MR 1171758 | Zbl 0756.35081
,[22] Gromov-Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys. 164 (1994), 525-562. | MR 1291244 | Zbl 0853.14020
& ,[23] Witten's conjecture and the Virasoro conjecture for genus up to two, in Gromov-Witten theory of spin curves and orbifolds, Contemp. Math. 403, Amer. Math. Soc., 2006, 31-42. | MR 2234883 | Zbl 1114.14034
,[24] Invariance of tautological equations. I. Conjectures and applications, J. Eur. Math. Soc. (JEMS) 10 (2008), 399-413. | MR 2390329 | Zbl 1170.14021
,[25] Invariance of tautological equations. II. Gromov-Witten theory, J. Amer. Math. Soc. 22 (2009), 331-352. | MR 2476776 | Zbl 1206.14078
,[26] Witten's conjecture, Virasoro conjecture, and invariance of tautological equations, preprint arXiv:math.AG/0311100. | MR 2234883 | Zbl 1206.14078
,[27] Frobenius manifolds, Gromov-Witten theory, and Virasoro constraints, preprint http://www.math.princeton.edu/~rahulp/Part1.ps and http://www.math.princeton.edu/~rahulp/Part2.ps.
& ,[28] The virtual class of the moduli stack of stable -spin curves, Comm. Math. Phys. 264 (2006), 1-40. | MR 2211733 | Zbl 1136.14015
,[29] Towards an enumerative geometry of the moduli space of curves, in Arithmetic and geometry, Vol. II, Progr. Math. 36, Birkhäuser, 1983, 271-328. | MR 717614 | Zbl 0554.14008
,[30] Witten's top Chern class on the moduli space of higher spin curves, in Frobenius manifolds, Aspects Math., E36, Vieweg, 2004, 253-264. | MR 2115773 | Zbl 1105.14010
,[31] Algebraic construction of Witten's top Chern class, in Advances in algebraic geometry motivated by physics (Lowell, MA, 2000), Contemp. Math. 276, Amer. Math. Soc., 2001, 229-249. | MR 1837120 | Zbl 1051.14007
& ,[32] Geometry of meromorphic functions and intersections on moduli spaces of curves, Int. Math. Res. Not. 2003 (2003), 2051-2094. | MR 1994776 | Zbl 1070.14030
,[33] Intersections in genus 3 and the Boussinesq hierarchy, Lett. Math. Phys. 65 (2003), 125-131. | MR 2022125 | Zbl 1048.37060
,[34] Intersection numbers with Witten's top Chern class, Geom. Topol. 12 (2008), 713-745. | MR 2403799 | Zbl 1141.14012
& ,[35] Algebraic geometry associated with matrix models of two-dimensional gravity, in Topological methods in modern mathematics (Stony Brook, NY, 1991), Publish or Perish, 1993, 235-269. | MR 1215968 | Zbl 0812.14017
,