Soit une variété non singulière complexe de type général et de dimension 3. Nous montrons et pour un certain entier . Une conséquence directe est la birationalité de l’application pluricanonique pour tout . De plus, le volume canonique a un minorant universel .
Let be a complex nonsingular projective 3-fold of general type. We prove and for some positive integer . A direct consequence is the birationality of the pluricanonical map for all . Besides, the canonical volume has a universal lower bound .
@article{ASENS_2010_4_43_3_365_0, author = {Chen, Jungkai A. and Chen, Meng}, title = {Explicit birational geometry of threefolds of general type, I}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, volume = {43}, year = {2010}, pages = {365-394}, doi = {10.24033/asens.2124}, mrnumber = {2667020}, zbl = {1194.14060}, language = {en}, url = {http://dml.mathdoc.fr/item/ASENS_2010_4_43_3_365_0} }
Chen, Jungkai A.; Chen, Meng. Explicit birational geometry of threefolds of general type, I. Annales scientifiques de l'École Normale Supérieure, Tome 43 (2010) pp. 365-394. doi : 10.24033/asens.2124. http://gdmltest.u-ga.fr/item/ASENS_2010_4_43_3_365_0/
[1] Complex algebraic surfaces, London Mathematical Society Lecture Note Series 68, Cambridge Univ. Press, 1983. | MR 732439 | Zbl 0512.14020
,[2] Canonical models of surfaces of general type, Publ. Math. I.H.É.S. 42 (1973), 171-219. | Numdam | MR 318163 | Zbl 0259.14005
,[3] The canonical volume of 3-folds of general type with , J. Lond. Math. Soc. 78 (2008), 693-706. | MR 2456899 | Zbl 1156.14009
& ,[4] The 5-canonical system on 3-folds of general type, J. reine angew. Math. 603 (2007), 165-181. | MR 2312557 | Zbl 1121.14029
, & ,[5] Pluricanonical systems on irregular 3-folds of general type, Math. Z. 255 (2007), 343-355. | MR 2262735 | Zbl 1195.14018
& ,[6] Canonical stability of 3-folds of general type with , Internat. J. Math. 14 (2003), 515-528. | MR 1993794 | Zbl 1070.14009
,[7] On the -divisor method and its application, J. Pure Appl. Algebra 191 (2004), 143-156. | MR 2048311 | Zbl 1049.14034
,[8] A sharp lower bound for the canonical volume of 3-folds of general type, Math. Ann. 337 (2007), 887-908. | MR 2285742 | Zbl 1124.14038
,[9] Complex projective 3-fold with non-negative canonical Euler-Poincaré characteristic, Comm. Anal. Geom. 16 (2008), 159-182. | MR 2411471 | Zbl 1149.14034
& ,[10] Global generation of pluricanonical and adjoint linear series on smooth projective threefolds, J. Amer. Math. Soc. 6 (1993), 875-903. | MR 1207013 | Zbl 0803.14004
& ,[11] Contributions to Riemann-Roch on projective -folds with only canonical singularities and applications, in Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math. 46, Amer. Math. Soc., 1987, 221-231. | MR 927958 | Zbl 0662.14026
,[12] Inverting Reid's exact plurigenera formula, Math. Ann. 284 (1989), 617-629. | MR 1006376 | Zbl 0661.14013
,[13] Boundedness of pluricanonical maps of varieties of general type, Invent. Math. 166 (2006), 1-25. | MR 2242631 | Zbl 1121.14011
& ,[14] Working with weighted complete intersections, in Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser. 281, Cambridge Univ. Press, 2000, 101-173. | MR 1798982 | Zbl 0960.14027
,[15] A generalization of Kodaira-Ramanujam's vanishing theorem, Math. Ann. 261 (1982), 43-46. | MR 675204 | Zbl 0476.14007
,[16] On the plurigenera of minimal algebraic -folds with , Math. Ann. 275 (1986), 539-546. | MR 859328 | Zbl 0582.14015
,[17] Introduction to the minimal model problem, in Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math. 10, North-Holland, 1987, 283-360. | MR 946243 | Zbl 0672.14006
, & ,[18] Higher direct images of dualizing sheaves. I, Ann. of Math. 123 (1986), 11-42. | MR 825838 | Zbl 0598.14015
,[19] Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics 134, Cambridge Univ. Press, 1998. | MR 1658959 | Zbl 0926.14003
& ,[20] Global -forms on regular -folds of general type, Duke Math. J. 71 (1993), 859-869. | MR 1240606 | Zbl 0838.14032
,[21] Canonical -folds, in Journées de Géométrie Algébrique d'Angers, juillet 1979, Sijthoff & Noordhoff, 1980, 273-310. | MR 605348 | Zbl 0451.14014
,[22] Minimal models of canonical -folds, in Algebraic varieties and analytic varieties (Tokyo, 1981), Adv. Stud. Pure Math. 1, North-Holland, 1983, 131-180. | MR 715649 | Zbl 0558.14028
,[23] Young person's guide to canonical singularities, in Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math. 46, Amer. Math. Soc., 1987, 345-414. | MR 927963 | Zbl 0634.14003
,[24] Pluricanonical systems on algebraic varieties of general type, Invent. Math. 165 (2006), 551-587. | MR 2242627 | Zbl 1108.14031
,[25] Pluricanonical systems of projective varieties of general type. I, Osaka J. Math. 43 (2006), 967-995. | MR 2303558 | Zbl 1142.14012
,[26] Vanishing theorems, J. reine angew. Math. 335 (1982), 1-8. | MR 667459 | Zbl 0485.32019
,