Dans cet article, nous donnons une description explicite des réalisations de de Rham et -adiques des polylogarithmes elliptiques en utilisant la fonction thêta de Kronecker. Considérons en particulier une courbe elliptique définie sur un corps quadratique imaginaire , à multiplication complexe par l’anneau des entiers de , et ayant bonne réduction en chaque place au-dessus d’un nombre premier non ramifié dans . On notera que le nombre de classe de est nécessairement égal à un. Nous montrons alors que les spécialisations des polylogarithmes -adiques aux points de torsion de d’ordre premier à sont reliées aux nombres d’Eisenstein-Kronecker -adiques. Ce résultat est valable même si a une réduction supersingulière en . C’est un analogue -adique d’un cas spécial du résultat de Beilinson et Levin exprimant la réalisation de Hodge du polylogarithme elliptique en utilisant les séries d’Eisenstein-Kronecker-Lerch. Si est quelconque, nous établissons un lien entre les nombres d’Eisenstein-Kronecker -adiques et les valeurs spéciales des fonctions associées aux caractères de Hecke de .
In this paper, we give an explicit description of the de Rham and -adic polylogarithms for elliptic curves using the Kronecker theta function. In particular, consider an elliptic curve defined over an imaginary quadratic field with complex multiplication by the full ring of integers of . Note that our condition implies that has class number one. Assume in addition that has good reduction above a prime unramified in . In this case, we prove that the specializations of the -adic elliptic polylogarithm to torsion points of of order prime to are related to -adic Eisenstein-Kronecker numbers. Our result is valid even if has supersingular reduction at . This is a -adic analogue in a special case of the result of Beilinson and Levin, expressing the Hodge realization of the elliptic polylogarithm in terms of Eisenstein-Kronecker-Lerch series. When is ordinary, then we relate the -adic Eisenstein-Kronecker numbers to special values of -adic -functions associated to certain Hecke characters of .
@article{ASENS_2010_4_43_2_185_0, author = {Bannai, Kenichi and Kobayashi, Shinichi and Tsuji, Takeshi}, title = {On the de Rham and $p$-adic realizations of the elliptic polylogarithm for CM elliptic curves}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, volume = {43}, year = {2010}, pages = {185-234}, doi = {10.24033/asens.2119}, mrnumber = {2662664}, zbl = {1197.11073}, language = {en}, url = {http://dml.mathdoc.fr/item/ASENS_2010_4_43_2_185_0} }
Bannai, Kenichi; Kobayashi, Shinichi; Tsuji, Takeshi. On the de Rham and $p$-adic realizations of the elliptic polylogarithm for CM elliptic curves. Annales scientifiques de l'École Normale Supérieure, Tome 43 (2010) pp. 185-234. doi : 10.24033/asens.2119. http://gdmltest.u-ga.fr/item/ASENS_2010_4_43_2_185_0/
[1] Weierstrass elliptic and related functions, Ch. 18, in Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover Publications Inc., 1992, p. 627-671. | MR 1225604 | Zbl 0643.33001
& (éds.),[2] Algebraic versus rigid cohomology with logarithmic coefficients, in Barsotti Symposium in Algebraic Geometry (Abano Terme, 1991), Perspect. Math. 15, Academic Press, 1994, 11-50. | MR 1307391 | Zbl 0833.14010
& ,[3] Rigid syntomic cohomology and -adic polylogarithms, J. reine angew. Math. 529 (2000), 205-237. | MR 1799937 | Zbl 1006.19002
,[4] On the -adic realization of elliptic polylogarithms for CM-elliptic curves, Duke Math. J. 113 (2002), 193-236. | MR 1909217 | Zbl 1019.11018
,[5] -adic elliptic polylogarithm, -adic Eisenstein series and Katz measure, preprint arXiv:0707.3747, to appear in Amer. J. Math. | MR 2766179 | Zbl 1225.11075
& ,[6] Algebraic theta functions and -adic interpolation of Eisenstein-Kronecker numbers, preprint arXiv:math.NT/0610163, to appear in Duke Math. J. | MR 2667134 | Zbl 1205.11076
& ,[7] The elliptic polylogarithm, in Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math. 55, Amer. Math. Soc., 1994, 123-190. | MR 1265553 | Zbl 0817.14014
& ,[8] Géométrie rigide et cohomologie des variétés algébriques de caractéristique , Mém. Soc. Math. France (N.S.) 23 (1986), 7-32. | Numdam | MR 865810 | Zbl 0606.14017
,[9] Cohomologie rigide et cohomologie rigide à support propre, première partie, preprint IRMAR 96-03, 1996.
,[10] Finitude et pureté cohomologique en cohomologie rigide, Invent. Math. 128 (1997), 329-377. | MR 1440308 | Zbl 0908.14005
,[11] A new construction of -adic -functions attached to certain elliptic curves with complex multiplication, Ann. Inst. Fourier (Grenoble) 36 (1986), 31-68. | Numdam | MR 867915 | Zbl 0608.14015
,[12] -adic interpolation of logarithmic derivatives associated to certain Lubin-Tate formal groups, Ann. Inst. Fourier (Grenoble) 36 (1986), 1-27. | Numdam | MR 865657 | Zbl 0587.12007
,[13] Fonctions -adiques, Séminaire Bourbaki, vol. 1998/99, exposé no 851, Astérisque 266 (2000), 21-58. | Numdam | MR 1772669 | Zbl 0964.11055
,[14] -functions of elliptic curves with complex multiplication. I, Acta Arith. 17 (1970), 287-301. | Zbl 0209.24603
,[15] -functions of elliptic curves with complex multiplication. II, Acta Arith. 19 (1971), 311-317. | Zbl 0229.12015
,[16] Modules galoisiens, modules filtrés et anneaux de Barsotti-Tate, in Journées de Géométrie Algébrique de Rennes. (Rennes, 1978), Vol. III, Astérisque 65, Soc. Math. France, 1979, 3-80. | Zbl 0429.14016
,[17] Degeneration of -adic Eisenstein classes and of the elliptic polylog, Invent. Math. 135 (1999), 545-594. | Zbl 0955.11027
& ,[18] Classical motivic polylogarithm according to Beilinson and Deligne, Doc. Math. 3 (1998), 27-133; correction: idem, 297-299. | Zbl 0906.19004
& ,[19] -adic interpolation of real analytic Eisenstein series, Ann. of Math. 104 (1976), 459-571. | Zbl 0354.14007
,[20] Elliptic polylogarithms: an analytic theory, Compositio Math. 106 (1997), 267-282. | Zbl 0905.11028
,[21] Towards multiple elliptic polylogarithm, preprint arXiv:math/0703237.
& ,[22] -adic Hecke series of imaginary quadratic fields, Mat. Sb. (N.S.) 95 (1974), 357-383. | Zbl 0352.12013
& ,[23] Formal cohomology. I, Ann. of Math. 88 (1968), 181-217. | Zbl 0162.52504
& ,[24] Fonctions -adiques des représentations -adiques, Astérisque 229 (1995). | Zbl 0845.11040
,[25] -adic Fourier theory, Doc. Math. 6 (2001), 447-481. | MR 1871671 | Zbl 1028.11069
& ,[26] Iwasawa theory of elliptic curves with complex multiplication, Perspectives in Mathematics 3, Academic Press Inc., 1987. | MR 917944 | Zbl 0674.12004
,[27] Crystalline fundamental groups. II. Log convergent cohomology and rigid cohomology, J. Math. Sci. Univ. Tokyo 9 (2002), 1-163. | MR 1889223 | Zbl 1057.14025
,[28] -adic elliptic polylogarithms and arithmetic applications, Thèse, Ben-Gurion University, 2009.
,[29] On base change theorem and coherence in rigid cohomology, Doc. Math. extra vol. (2003), 891-918. | MR 2046617 | Zbl 1093.14503
,[30] Elliptic functions according to Eisenstein and Kronecker, Ergebn. Math. Grenzg. 88, Springer, 1976. | MR 562289 | Zbl 0318.33004
,[31] Weierstrass sigma function, http://mathworld.wolfram.com/WeierstrassSigmaFunction.html.
,[32] Realizations of polylogarithms, Lecture Notes in Math. 1650, Springer, 1997. | MR 1482233 | Zbl 0877.11001
,[33] On -adic -functions for CM elliptic curves at supersingular primes, Mémoire, University of Tokyo, 2002.
,