Real singular Del Pezzo surfaces and 3-folds fibred by rational curves, II
[Surfaces de Del Pezzo singulières réelles et variétés de dimension 3 munies d’une fibration en courbes rationnelles]
Catanese, Fabrizio ; Mangolte, Frédéric
Annales scientifiques de l'École Normale Supérieure, Tome 42 (2009), p. 531-557 / Harvested from Numdam

Soit WX une variété projective réelle non singulière munie d’une fibration en courbes rationnelles et telle que W() soit orientable. J. Kollár a montré qu’une composante connexe N de W() est essentiellement une variété de Seifert ou une somme connexe d’espaces lenticulaires. Répondant à trois questions de Kollár, nous donnons une estimation optimale du nombre et des multiplicités des fibres de Seifert (resp. du nombre et des torsions des espaces lenticulaires) lorsque X est une surface géométriquement rationnelle. Lorsque N admet une fibration de Seifert au-dessus d’un orbifold F, nos résultats généralisent le théorème de Comessatti sur les surfaces rationnelles réelles lisses  : F ne peut pas être à la fois orientable et de type hyperbolique. Nous montrons, ce qui est une surprise, qu’à la différence du théorème de Comessatti, il existe des exemples où F est non orientable, de type hyperbolique, et X est minimale.

Let WX be a real smooth projective 3-fold fibred by rational curves such that W() is orientable. J. Kollár proved that a connected component N of W() is essentially either Seifert fibred or a connected sum of lens spaces. Answering three questions of Kollár, we give sharp estimates on the number and the multiplicities of the Seifert fibres (resp. the number and the torsions of the lens spaces) when X is a geometrically rational surface. When N is Seifert fibred over a base orbifold F, our result generalizes Comessatti’s theorem on smooth real rational surfaces: F cannot be simultaneously orientable and of hyperbolic type. We show as a surprise that, unlike in Comessatti’s theorem, there are examples where F is non orientable, of hyperbolic type, and X is minimal.

Publié le : 2009-01-01
DOI : https://doi.org/10.24033/asens.2102
Classification:  14P25,  14M20,  14J26
Mots clés: surface de Del Pezzo, variété algébrique rationnellement connexe, variété de Seifert, surface de Du val
@article{ASENS_2009_4_42_4_531_0,
     author = {Catanese, Fabrizio and Mangolte, Fr\'ed\'eric},
     title = {Real singular Del Pezzo surfaces and 3-folds fibred by rational curves, II},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     volume = {42},
     year = {2009},
     pages = {531-557},
     doi = {10.24033/asens.2102},
     mrnumber = {2568875},
     zbl = {1183.14075},
     language = {en},
     url = {http://dml.mathdoc.fr/item/ASENS_2009_4_42_4_531_0}
}
Catanese, Fabrizio; Mangolte, Frédéric. Real singular Del Pezzo surfaces and 3-folds fibred by rational curves, II. Annales scientifiques de l'École Normale Supérieure, Tome 42 (2009) pp. 531-557. doi : 10.24033/asens.2102. http://gdmltest.u-ga.fr/item/ASENS_2009_4_42_4_531_0/

[1] F. Catanese & F. Mangolte, Real singular Del Pezzo surfaces and 3-folds fibred by rational curves. I, Michigan Math. J. 56 (2008), 357-373. | MR 2492399 | Zbl 1200.14109

[2] A. Comessatti, Sulla connessione delle superficie razionali reali, Annali di Mat. 23 (1915), 215-283. | JFM 45.0889.02

[3] A. Degtyarev, I. Itenberg & V. Kharlamov, Real Enriques surfaces, Lecture Notes in Math. 1746, Springer, 2000. | MR 1795406 | Zbl 0963.14033

[4] T. Graber, J. Harris & J. Starr, Families of rationally connected varieties, J. Amer. Math. Soc. 16 (2003), 57-67. | MR 1937199 | Zbl 1092.14063

[5] J. Huisman & F. Mangolte, Every connected sum of lens spaces is a real component of a uniruled algebraic variety, Ann. Inst. Fourier (Grenoble) 55 (2005), 2475-2487. | Numdam | MR 2207390 | Zbl 1092.14070

[6] J. Huisman & F. Mangolte, Every orientable Seifert 3-manifold is a real component of a uniruled algebraic variety, Topology 44 (2005), 63-71. | MR 2104001 | Zbl 1108.14048

[7] J. Kollár, Real algebraic surfaces, preprint arXiv:alg-geom/9712003, 1997.

[8] J. Kollár, Real algebraic threefolds. III. Conic bundles, J. Math. Sci. (New York) 94 (1999), 996-1020. | MR 1703903 | Zbl 0964.14014

[9] F. Mangolte, Cycles algébriques sur les surfaces K3 réelles, Math. Z. 225 (1997), 559-576. | MR 1466402 | Zbl 0914.14019

[10] J. Milnor, A unique decomposition theorem for 3-manifolds, Amer. J. Math. 84 (1962), 1-7. | MR 142125 | Zbl 0108.36501

[11] S. Mori, On 3-dimensional terminal singularities, Nagoya Math. J. 98 (1985), 43-66. | MR 792770 | Zbl 0589.14005

[12] J. Nash, Real algebraic manifolds, Ann. of Math. 56 (1952), 405-421. | MR 50928 | Zbl 0048.38501

[13] P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), 401-487. | MR 705527 | Zbl 0561.57001

[14] R. Silhol, Real algebraic surfaces, Lecture Notes in Math. 1392, Springer, 1989. | MR 1015720 | Zbl 0691.14010