Soit une variété projective complexe lisse irréductible de dimension , plongée dans un espace projectif. Soit un sous-schéma fermé de , et soit un entier positif tel que soit engendré par ses sections globales. Fixons un entier , et supposons que le diviseur général soit lisse. Désignons par le quotient de par la cohomologie de et par les classes des composantes irréductibles de de dimension . Dans cet article, nous prouvons que la représentation de monodromie sur pour la famille des diviseurs lisses est irréductible.
Let be an -dimensional irreducible smooth complex projective variety embedded in a projective space. Let be a closed subscheme of , and be a positive integer such that is generated by global sections. Fix an integer , and assume the general divisor is smooth. Denote by the quotient of by the cohomology of and also by the cycle classes of the irreducible components of dimension of . In the present paper we prove that the monodromy representation on for the family of smooth divisors is irreducible.
@article{ASENS_2009_4_42_3_517_0, author = {Di Gennaro, Vincenzo and Franco, Davide}, title = {Monodromy of a family of hypersurfaces}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, volume = {42}, year = {2009}, pages = {517-529}, doi = {10.24033/asens.2101}, mrnumber = {2543331}, zbl = {1194.14016}, language = {en}, url = {http://dml.mathdoc.fr/item/ASENS_2009_4_42_3_517_0} }
Di Gennaro, Vincenzo; Franco, Davide. Monodromy of a family of hypersurfaces. Annales scientifiques de l'École Normale Supérieure, Tome 42 (2009) pp. 517-529. doi : 10.24033/asens.2101. http://gdmltest.u-ga.fr/item/ASENS_2009_4_42_3_517_0/
[1] Geometry of algebraic curves. Vol. I, Grund. Math. Wiss. 267, Springer, 1985. | Zbl 0559.14017
, , & ,[2] Factoriality and Néron-Severi groups, Commun. Contemp. Math. 10 (2008), 745-764. | MR 2446897 | Zbl 1156.14006
& ,[3] Sheaves in topology, Universitext, Springer, 2004. | MR 2050072 | Zbl 1043.14003
,[4] Joins and intersections, Monographs in Mathematics, Springer, 1999. | MR 1724388 | Zbl 0939.14003
, & ,[5] Intersection theory, Ergebnisse Math. Grenzg. 2, Springer, 1984. | MR 732620 | Zbl 0541.14005
,[6] Algebraic geometry, Graduate Texts in Math. 52, Springer, 1977. | MR 463157 | Zbl 0367.14001
,[7] The topology of complex projective varieties after S. Lefschetz, Topology 20 (1981), 15-51. | MR 592569 | Zbl 0445.14010
,[8] Isolated singular points on complete intersections, London Mathematical Society Lecture Note Series 77, Cambridge University Press, 1984. | MR 747303 | Zbl 0552.14002
,[9] Monodromy of a family of hypersurfaces containing a given subvariety, Ann. Sci. École Norm. Sup. 38 (2005), 365-386. | Numdam | MR 2166338 | Zbl 1086.14010
& ,[10] Algebraic geometry. III, Encyclopaedia of Mathematical Sciences 36, Springer, 1998. | MR 1602371 | Zbl 0886.14001
& (éds.),[11] Algebraic topology, McGraw-Hill Book Co., 1966. | MR 210112 | Zbl 0145.43303
,[12] On the Picard group of certain smooth surfaces in weighted projective spaces, in Algebraic geometry (La Rábida, 1981), Lecture Notes in Math. 961, Springer, 1982, 302-313. | MR 708341 | Zbl 0507.14025
,[13] Théorie de Hodge et géométrie algébrique complexe, Cours Spécialisés 10, Soc. Math. France, 2002. | MR 1988456 | Zbl 1032.14001
,