Nous obtenons un nouveau théorème d’existence relatif au problème de Plateau dans l’espace euclidien de dimension . Ce faisant, nous comparons les approches d’E.R. Reifenberg d’une part, et de H. Federer et W.H. Fleming d’autre part. Un pas technique important consiste à démontrer qu’on peut approcher tout ensemble compact et rectifiable, en mesure de Hausdorff et en distance de Hausdorff, par une surface localement acyclique ayant le même bord.
We prove a new existence theorem pertaining to the Plateau problem in -dimensional Euclidean space. We compare the approach of E.R. Reifenberg with that of H. Federer and W.H. Fleming. A relevant technical step consists in showing that compact rectifiable surfaces are approximatable in Hausdorff measure and in Hausdorff distance by locally acyclic surfaces having the same boundary.
@article{ASENS_2009_4_42_1_37_0, author = {Pauw, Thierry De}, title = {Size minimizing surfaces}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, volume = {42}, year = {2009}, pages = {37-101}, doi = {10.24033/asens.2090}, mrnumber = {2518893}, zbl = {1184.49041}, language = {en}, url = {http://dml.mathdoc.fr/item/ASENS_2009_4_42_1_37_0} }
Pauw, Thierry De. Size minimizing surfaces. Annales scientifiques de l'École Normale Supérieure, Tome 42 (2009) pp. 37-101. doi : 10.24033/asens.2090. http://gdmltest.u-ga.fr/item/ASENS_2009_4_42_1_37_0/
[1] On the first variation of a varifold: boundary behavior, Ann. of Math. 101 (1975), 418-446. | MR 397520 | Zbl 0319.49026
,[2] The surface evolver, Experiment. Math. 1 (1992), 141-165. | MR 1203871 | Zbl 0769.49033
,[3] Dirichlet's Principle, Conformal Mapping, and Minimal Surfaces, Interscience Publishers, Inc., 1950. | MR 36317 | Zbl 0040.34603
,[4] Nearly flat almost monotone measures are big pieces of Lipschitz graphs, J. Geom. Anal. 12 (2002), 29-61. | MR 1881290 | Zbl 1025.49027
,[5] Comparing homologies: Čech's theory, singular chains, integral flat chains and integral currents, Rev. Mat. Iberoam. 23 (2007), 143-189. | MR 2351129 | Zbl 1246.49038
,[6] Concentrated, nearly monotonic, epiperimetric measures in Euclidean space, J. Differential Geom. 77 (2007), 77-134. | MR 2344355 | Zbl 1151.28004
,[7] Size minimization and approximating problems, Calc. Var. Partial Differential Equations 17 (2003), 405-442. | MR 1993962 | Zbl 1022.49026
& ,[8] Foundations of algebraic topology, Princeton University Press, 1952. | MR 50886 | Zbl 0047.41402
& ,[9] Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, 1992. | MR 1158660 | Zbl 0804.28001
& ,[10] Curvature measures, Trans. Amer. Math. Soc. 93 (1959), 418-491. | MR 110078 | Zbl 0089.38402
,[11] Geometric measure theory, Die Grund. Math. Wiss., Band 153, Springer, 1969. | MR 257325 | Zbl 0176.00801
,[12] Normal and integral currents, Ann. of Math. 72 (1960), 458-520. | MR 123260 | Zbl 0187.31301
& ,[13] Un résultat d'existence pour les ensembles minimaux par optimisation sur des grilles polyédrales, Thèse de doctorat, Université d'Orsay, 2008.
,[14] An example in the problem of least area, Proc. Amer. Math. Soc. 7 (1956), 1063-1074. | MR 82046 | Zbl 0078.13804
,[15] On the oriented Plateau problem, Rend. Circ. Mat. Palermo 11 (1962), 69-90. | MR 157263 | Zbl 0107.31304
,[16] Regularity of the distance function, Proc. Amer. Math. Soc. 92 (1984), 153-155. | MR 749908 | Zbl 0528.53005
,[17] Sur la stabilité des systèmes liquides en lames minces, Mémoires de l'Académie Royale de Belgique 35 (1864).
,[18] Curvy slicing proves that triple junctions locally minimize area, J. Differential Geom. 44 (1996), 514-528. | MR 1431003 | Zbl 0870.53006
& ,[19] Size-minimizing rectifiable currents, Invent. Math. 96 (1989), 333-348. | MR 989700 | Zbl 0645.49024
,[20] Geometric measure theory, a beginner's guide, third éd., Academic Press Inc., 2000. | MR 1775760 | Zbl 0671.49043
,[21] D. Pavlica, personal communication.
[22] Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires, Gauthier-Villars, 1873. | JFM 06.0516.03
,[23] Solution of the Plateau Problem for -dimensional surfaces of varying topological type, Acta Math. 104 (1960), 1-92. | MR 114145 | Zbl 0099.08503
,[24] An epiperimetric inequality related to the analyticity of minimal surfaces, Ann. of Math. 80 (1964), 1-14. | MR 171197 | Zbl 0151.16701
,[25] Variétés différentiables. Formes, courants, formes harmoniques, Hermann, 1973. | Zbl 0284.58001
,[26] Lectures on geometric measure theory, Proceedings of the Centre for Mathematical Analysis, Australian National University, 1983. | MR 756417 | Zbl 0546.49019
,[27] The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces, Ann. of Math. 103 (1976), 489-539. | MR 428181 | Zbl 0335.49032
,[28] Geometric integration theory, Princeton University Press, 1957. | MR 87148 | Zbl 0083.28204
,