Pour toute variété compacte, de dimension quelconque, nous construisons une partie non vide, ouverte dans l’espace des -difféomorphismes de , et un sous-ensemble dense en , constitué de difféomorphismes dont le centralisateur est non dénombrable, donc non trivial.
Given any compact manifold , we construct a non-empty open subset of the space of -diffeomorphisms and a dense subset such that the centralizer of every diffeomorphism in is uncountable, hence non-trivial.
@article{ASENS_2008_4_41_6_925_0, author = {Bonatti, Christian and Crovisier, Sylvain and Vago, Gioia M. and Wilkinson, Amie}, title = {Local density of diffeomorphisms with large centralizers}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, volume = {41}, year = {2008}, pages = {925-954}, doi = {10.24033/asens.2085}, mrnumber = {2504109}, zbl = {1163.58003}, language = {en}, url = {http://dml.mathdoc.fr/item/ASENS_2008_4_41_6_925_0} }
Bonatti, Christian; Crovisier, Sylvain; Vago, Gioia M.; Wilkinson, Amie. Local density of diffeomorphisms with large centralizers. Annales scientifiques de l'École Normale Supérieure, Tome 41 (2008) pp. 925-954. doi : 10.24033/asens.2085. http://gdmltest.u-ga.fr/item/ASENS_2008_4_41_6_925_0/
[1] Mather invariants and smooth conjugacy on , J. Dynam. & Control Systems 6 (2000), 341-352. | MR 1763673 | Zbl 1063.37036
& ,[2] Dynamiques symplectiques génériques, Ergodic Theory & Dynam. Systems 25 (2005), 1401-1436. | MR 2173426 | Zbl 1084.37017
, & ,[3] On the structure of the group of equivariant diffeomorphisms, Topology 16 (1977), 279-283. | MR 494238 | Zbl 0359.57032
,[4] Récurrence et généricité, Invent. Math. 158 (2004), 33-104. | MR 2090361 | Zbl 1071.37015
& ,[5] The centralizer of a generic diffeomorphism is trivial, Electron. Res. Announc. Math. Sci. 15 (2008), 33-43. | MR 2407535 | Zbl 1149.37012
, & ,[6] -generic conservative diffeomorphisms have trivial centralizer, J. Mod. Dyn. 2 (2008), 359-373. | MR 2383272 | Zbl 1149.37017
, & ,[7] The generic diffeomorphism has trivial centralizer, preprint arXiv:0804.1416, to appear in Publ. Math. I.H.É.S. | Numdam | Zbl 1177.37025
, & ,[8] On maximal transitive sets of generic diffeomorphisms, Publ. Math. Inst. Hautes Études Sci. 96 (2002), 171-197. | Numdam | MR 1985032 | Zbl 1032.37011
& ,[9] A -generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources, Ann. of Math. 158 (2003), 355-418. | MR 2018925 | Zbl 1049.37011
, & ,[10] Dynamics beyond uniform hyperbolicity, Encyclopaedia of Math. Sci. 102, Springer, 2005. | MR 2105774 | Zbl 1060.37020
, & ,[11] Groups of homeomorphisms of one-manifolds. III. Nilpotent subgroups, Ergodic Theory & Dynam. Systems 23 (2003), 1467-1484. | MR 2018608 | Zbl 1037.37020
& ,[12] Commuting diffeomorphisms, in Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., 1970, 165-184. | MR 270396 | Zbl 0225.57020
,[13] Commutators of diffeomorphisms, Comment. Math. Helv. 49 (1974), 512-528. | MR 356129 | Zbl 0289.57014
,[14] Vector fields generate few diffeomorphisms, Bull. Amer. Math. Soc. 80 (1974), 503-505. | MR 348795 | Zbl 0296.57008
,[15] Dynamics retrospective: great problems, attempts that failed, Phys. D 51 (1991), 267-273. | MR 1128817 | Zbl 0745.58018
,[16] Mathematical problems for the next century, Math. Intelligencer 20 (1998), 7-15. | MR 1631413 | Zbl 0947.01011
,