J-invariant of linear algebraic groups
[J-invariant des groupes algébriques linéaires]
Petrov, Viktor ; Semenov, Nikita ; Zainoulline, Kirill
Annales scientifiques de l'École Normale Supérieure, Tome 41 (2008), p. 1023-1053 / Harvested from Numdam

Soit G un groupe algébrique linéaire semi-simple de type intérieur sur un corps F et soit X un G-espace homogène projectif tel que le groupe G soit déployé sur le point générique de X. Nous introduisons le J-invariant de G qui caractérise le comportement motivique de X et généralise le J-invariant défini par A. Vishik dans le cadre des formes quadratiques. Nous utilisons cet invariant pour obtenir les décompositions motiviques de tous les G-espaces homogènes projectifs qui sont génériquement déployés, par exemple les variétés de Severi-Brauer, les quadriques de Pfister, la grassmannienne des sous-espaces totalement isotropes maximaux d’une forme quadratique, la variété des sous-groupes de Borel de G. Nous discutons également les relations avec les indices de torsion, la dimension canonique et les invariants cohomologiques du groupe G.

Let G be a semisimple linear algebraic group of inner type over a field F, and let X be a projective homogeneous G-variety such that G splits over the function field of X. We introduce the J-invariant of G which characterizes the motivic behavior of X, and generalizes the J-invariant defined by A. Vishik in the context of quadratic forms. We use this J-invariant to provide motivic decompositions of all generically split projective homogeneous G-varieties, e.g. Severi-Brauer varieties, Pfister quadrics, maximal orthogonal Grassmannians, varieties of Borel subgroups of G. We also discuss relations with torsion indices, canonical dimensions and cohomological invariants of the group G.

Publié le : 2008-01-01
DOI : https://doi.org/10.24033/asens.2088
Classification:  14C25,  20G15
Mots clés: motif, groupe algébrique, espace homogène
@article{ASENS_2008_4_41_6_1023_0,
     author = {Petrov, Viktor and Semenov, Nikita and Zainoulline, Kirill},
     title = {$J$-invariant of linear algebraic groups},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     volume = {41},
     year = {2008},
     pages = {1023-1053},
     doi = {10.24033/asens.2088},
     mrnumber = {2504112},
     zbl = {1206.14017},
     language = {en},
     url = {http://dml.mathdoc.fr/item/ASENS_2008_4_41_6_1023_0}
}
Petrov, Viktor; Semenov, Nikita; Zainoulline, Kirill. $J$-invariant of linear algebraic groups. Annales scientifiques de l'École Normale Supérieure, Tome 41 (2008) pp. 1023-1053. doi : 10.24033/asens.2088. http://gdmltest.u-ga.fr/item/ASENS_2008_4_41_6_1023_0/

[1] F. W. Anderson & K. R. Fuller, Rings and categories of modules, second éd., Graduate Texts in Math. 13, Springer, 1992. | MR 1245487 | Zbl 0765.16001

[2] J.-P. Bonnet, Un isomorphisme motivique entre deux variétés homogènes projectives sous l’action d’un groupe de type G 2 , Doc. Math. 8 (2003), 247-277. | MR 2029167 | Zbl 1062.14012

[3] P. Brosnan, Steenrod operations in Chow theory, Trans. Amer. Math. Soc. 355 (2003), 1869-1903. | MR 1953530 | Zbl 1045.55005

[4] P. Brosnan, On motivic decompositions arising from the method of Białynicki-Birula, Invent. Math. 161 (2005), 91-111. | MR 2178658 | Zbl 1085.14045

[5] B. Calmès, V. Petrov, N. Semenov & K. Zainoulline, Chow motives of twisted flag varieties, Compos. Math. 142 (2006), 1063-1080. | MR 2249542 | Zbl 1111.14008

[6] V. Chernousov, A remark on the ( mod 5)-invariant of Serre for groups of type E 8 , Mat. Zametki 56 (1994), 116-121, 157. | MR 1309826 | Zbl 0835.20059

[7] V. Chernousov, S. Gille & A. Merkurjev, Motivic decomposition of isotropic projective homogeneous varieties, Duke Math. J. 126 (2005), 137-159. | MR 2110630 | Zbl 1086.14041

[8] V. Chernousov & A. Merkurjev, Motivic decomposition of projective homogeneous varieties and the Krull-Schmidt theorem, Transform. Groups 11 (2006), 371-386. | MR 2264459 | Zbl 1111.14009

[9] M. Demazure, Invariants symétriques entiers des groupes de Weyl et torsion, Invent. Math. 21 (1973), 287-301. | MR 342522 | Zbl 0269.22010

[10] M. Demazure, Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup. 7 (1974), 53-88. | Numdam | MR 354697 | Zbl 0312.14009

[11] H. Duan & X. Zhao, A unified formula for Steenrod operations in flag manifolds, Compos. Math. 143 (2007), 257-270. | MR 2295204 | Zbl 1117.55016

[12] D. Edidin & W. Graham, Characteristic classes in the Chow ring, J. Algebraic Geom. 6 (1997), 431-443. | MR 1487222 | Zbl 0922.14003

[13] R. Elman, N. Karpenko & A. Merkurjev, The algebraic and geometric theory of quadratic forms, to appear in AMS Colloquium Publications. | MR 2427530 | Zbl 1165.11042

[14] R. S. Garibaldi, The Rost invariant has trivial kernel for quasi-split groups of low rank, Comment. Math. Helv. 76 (2001), 684-711. | MR 1881703 | Zbl 1001.20042

[15] R. S. Garibaldi & H. P. Petersson, Groups of outer type E 6 with trivial Tits algebras, Transform. Groups 12 (2007), 443-474. | MR 2356318 | Zbl 1139.17004

[16] P. Gille, Invariants cohomologiques de Rost en caractéristique positive, K-Theory 21 (2000), 57-100. | MR 1802626 | Zbl 0993.20031

[17] A. Grothendieck, La torsion homologique et les sections rationnelles, in Anneaux de Chow et applications, Séminaire C. Chevalley, 2e année, 1958.

[18] A. J. Hahn & O. T. O'Meara, The classical groups and K-theory, Grund. Math. Wiss. 291, Springer, 1989. | MR 1007302 | Zbl 0683.20033

[19] H. Hiller, Geometry of Coxeter groups, Research Notes in Math. 54, Pitman (Advanced Publishing Program), 1982. | MR 649068 | Zbl 0483.57002

[20] V. G. Kac, Torsion in cohomology of compact Lie groups and Chow rings of reductive algebraic groups, Invent. Math. 80 (1985), 69-79. | MR 784529 | Zbl 0566.57028

[21] N. Karpenko, Grothendieck Chow motives of Severi-Brauer varieties, St. Petersburg Math. J. 7 (1996), 649-661. | MR 1356536 | Zbl 0866.14006

[22] N. Karpenko & A. Merkurjev, Canonical p-dimension of algebraic groups, Adv. Math. 205 (2006), 410-433. | MR 2258262 | Zbl 1119.14041

[23] I. Kersten & U. Rehmann, Generic splitting of reductive groups, Tohoku Math. J. 46 (1994), 35-70. | MR 1256727 | Zbl 0805.20034

[24] M.-A. Knus, A. Merkurjev, M. Rost & J.-P. Tignol, The book of involutions, AMS Colloquium Publ. 44 (1998). | MR 1632779 | Zbl 0955.16001

[25] B. Köck, Chow motif and higher Chow theory of G/P, Manuscripta Math. 70 (1991), 363-372. | MR 1092142 | Zbl 0735.14001

[26] Y. Manin, Correspondences, motives and monoidal transformations, Math. USSR Sbornik 6 (1968), 439-470. | Zbl 0199.24803

[27] A. Merkurjev, Rost invariants of simply connected algebraic groups, in Cohomological invariants in Galois cohomology, Univ. Lecture Ser. 28, Amer. Math. Soc., 2003, 101-158. | MR 1999385

[28] A. Merkurjev, I. A. Panin & A. R. Wadsworth, Index reduction formulas for twisted flag varieties 10 (1996), 517-596. | MR 1415325 | Zbl 0874.16012

[29] M. Mimura & H. Toda, Topology of Lie groups. I, II, Translations of Mathematical Monographs 91, Amer. Math. Soc., 1991. | MR 1122592 | Zbl 0757.57001

[30] S. Nikolenko, N. Semenov & K. Zainoulline, Motivic decomposition of anisotropic varieties of type F 4 into generalized Rost motives, to appear in J. of K-Theory. | MR 2476041 | Zbl 1163.14014

[31] I. A. Panin, On the algebraic K-theory of twisted flag varieties, K-Theory 8 (1994), 541-585. | MR 1326751 | Zbl 0854.19002

[32] M. Rost, The motive of a Pfister form, preprint http://www.mathematik.uni-bielefeld.de/~rost/data/motive.pdf, 1998.

[33] M. Rost, On the basic correspondence of a splitting variety, preprint http://www.mathematik.uni-bielefeld.de/~rost/data/bkc-c.pdf, 2006.

[34] J. Tits, Classification of algebraic semisimple groups, in Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), Amer. Math. Soc., 1966, 33-62. | MR 224710 | Zbl 0238.20052

[35] A. Vishik, On the Chow groups of quadratic Grassmannians, Doc. Math. 10 (2005), 111-130. | MR 2148072 | Zbl 1115.14002

[36] A. Vishik, Fields of u-invariant 2 r +1, in Algebra, Arithmetic and Geometry, Manin Festschrift, Birkhäuser, 2007. | Zbl 1236.11037

[37] V. Voevodsky, On motivic cohomology with /l-coefficients, preprint http://www.math.uiuc.edu/K-theory/0639/post_mot.pdf, 2003.

[38] K. Zainoulline, Canonical p-dimensions of algebraic groups and degrees of basic polynomial invariants, Bull. Lond. Math. Soc. 39 (2007), 301-304. | MR 2323462 | Zbl 1122.14008