Growth of Selmer groups of Hilbert modular forms over ring class fields
[Croissance des groupes de Selmer de formes modulaires de Hilbert sur des corps de classes d'anneau]
Nekovář, Jan
Annales scientifiques de l'École Normale Supérieure, Tome 41 (2008), p. 1003-1022 / Harvested from Numdam

On donne des bornes inférieures non triviales sur la croissance des rangs des groupes de Selmer de formes modulaires de Hilbert sur les corps de classes d'anneau et sur des extensions de Kummer, en démontrant d'abord un résultat de parité.

We prove non-trivial lower bounds for the growth of ranks of Selmer groups of Hilbert modular forms over ring class fields and over certain Kummer extensions, by establishing first a suitable parity result.

Publié le : 2008-01-01
DOI : https://doi.org/10.24033/asens.2087
Classification:  11G40,  11F41,  11G05
Mots clés: groupes de Selmer, formes modulaires de Hilbert
@article{ASENS_2008_4_41_6_1003_0,
     author = {Nekov\'a\v r, Jan},
     title = {Growth of Selmer groups of Hilbert modular forms over ring class fields},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     volume = {41},
     year = {2008},
     pages = {1003-1022},
     doi = {10.24033/asens.2087},
     mrnumber = {2504111},
     zbl = {1236.11047},
     language = {en},
     url = {http://dml.mathdoc.fr/item/ASENS_2008_4_41_6_1003_0}
}
Nekovář, Jan. Growth of Selmer groups of Hilbert modular forms over ring class fields. Annales scientifiques de l'École Normale Supérieure, Tome 41 (2008) pp. 1003-1022. doi : 10.24033/asens.2087. http://gdmltest.u-ga.fr/item/ASENS_2008_4_41_6_1003_0/

[1] E. Aflalo & J. Nekovář, Non-triviality of CM points in ring class field towers, to appear in Israel J. Math.. | MR 2607546 | Zbl 1273.11094

[2] S. Bloch & K. Kato, L-functions and Tamagawa numbers of motives, in The Grothendieck Festschrift, Vol. I, Progr. Math. 86, Birkhäuser, 1990, 333-400. | MR 1086888 | Zbl 0768.14001

[3] J. Coates, T. Fukaya, K. Kato & R. Sujatha, Root numbers, Selmer groups and non-commutative Iwasawa theory, preprint. | MR 2551757 | Zbl 1213.11135

[4] C. Cornut & V. Vatsal, Nontriviality of Rankin-Selberg L-functions and CM points, in L-functions and Galois representations (Durham, July 2004), LMS Lecture Note Series 320, Cambridge Univ. Press, 2007, 121-186. | MR 2392354 | Zbl 1153.11025

[5] T. Dokchitser & V. Dockchitser, Regulator constants and the parity conjecture, preprint arXiv:0709.2852. | Zbl 1219.11083

[6] T. Dokchitser & V. Dokchitser, On the Birch-Swinnerton-Dyer quotients modulo squares, preprint arXiv:math/0610290. | Zbl 1223.11079

[7] V. Dokchitser, Root numbers of non-abelian twists of elliptic curves, Proc. London Math. Soc. 91 (2005), 300-324. | MR 2167089 | Zbl 1076.11042

[8] J.-M. Fontaine & B. Perrin-Riou, Autour des conjectures de Bloch et Kato: cohomologie galoisienne et valeurs de fonctions L, in Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math. 55, Amer. Math. Soc., 1994, 599-706. | MR 1265546 | Zbl 0821.14013

[9] B. H. Gross & D. Prasad, Test vectors for linear forms, Math. Ann. 291 (1991), 343-355. | MR 1129372 | Zbl 0768.22004

[10] H. Jacquet, Automorphic forms on GL (2). Part II, Lecture Notes in Math. 278, Springer, 1972. | MR 562503 | Zbl 0243.12005

[11] H. Jacquet & R. P. Langlands, Automorphic forms on GL (2), Lecture Notes in Math. 114, Springer, 1970. | MR 401654 | Zbl 0236.12010

[12] B. Mazur & K. Rubin, Finding large Selmer rank via an arithmetic theory of local constants, Ann. of Math. 166 (2007), 579-612. | MR 2373150 | Zbl 1219.11084

[13] J. Nekovář, Selmer complexes, Astérisque 310 (2006), 559. | MR 2333680 | Zbl 1211.11120

[14] J. Nekovář, On the parity of ranks of Selmer groups. III, Doc. Math. 12 (2007), 243-274. | MR 2350290 | Zbl 1201.11067

[15] J. Nekovář, The Euler system method for CM points on Shimura curves 2004), LMS Lecture Note Series 320, Cambridge Univ. Press, 2007, 471-547. | MR 2392363 | Zbl 1152.11023

[16] J. Nekovář, On the parity of ranks of Selmer groups IV, to appear in Compositio Math.. | MR 2575086 | Zbl 1221.11150

[17] H. Saito, On Tunnell’s formula for characters of GL (2), Compositio Math. 85 (1993), 99-108. | Numdam | MR 1199206 | Zbl 0795.22009

[18] J. B. Tunnell, Local ϵ-factors and characters of GL (2), Amer. J. Math. 105 (1983), 1277-1307. | MR 721997 | Zbl 0532.12015

[19] J.-L. Waldspurger, Correspondances de Shimura et quaternions, Forum Math. 3 (1991), 219-307. | MR 1103429 | Zbl 0724.11026