Nous étudions des facteurs et de type II associés à de bonnes actions Bernoulli généralisées de groupes et ayant un sous-groupe infini presque-distingué avec la propriété (T) relative. Nous démontrons le résultat de rigidité suivant : chaque --bimodule d’indice fini (en particulier, chaque isomorphisme entre et ) peut être décrit par une commensurabilité des groupes , et une commensurabilité de leurs actions. L’algèbre de fusion des --bimodules d’indice fini est identifiée avec une algèbre de Hecke étendue, ce qui fournit les premiers calculs explicites de l’algèbre de fusion d’un facteur de type II. Nous obtenons en particulier des exemples explicites de facteurs II dont l’algèbre de fusion est triviale, ce qui veut dire que tous leurs sous-facteurs d’indice fini sont triviaux.
We study II factors and associated with good generalized Bernoulli actions of groups having an infinite almost normal subgroup with the relative property (T). We prove the following rigidity result : every finite index --bimodule (in particular, every isomorphism between and ) is described by a commensurability of the groups involved and a commensurability of their actions. The fusion algebra of finite index --bimodules is identified with an extended Hecke fusion algebra, providing the first explicit computations of the fusion algebra of a II factor. We obtain in particular explicit examples of II factors with trivial fusion algebra, i.e. only having trivial finite index subfactors.
@article{ASENS_2008_4_41_5_743_0, author = {Vaes, Stefaan}, title = {Explicit computations of all finite index bimodules for a family of II$\_1$ factors}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, volume = {41}, year = {2008}, pages = {743-788}, doi = {10.24033/asens.2081}, mrnumber = {2504433}, zbl = {1194.46086}, language = {en}, url = {http://dml.mathdoc.fr/item/ASENS_2008_4_41_5_743_0} }
Vaes, Stefaan. Explicit computations of all finite index bimodules for a family of II$_1$ factors. Annales scientifiques de l'École Normale Supérieure, Tome 41 (2008) pp. 743-788. doi : 10.24033/asens.2081. http://gdmltest.u-ga.fr/item/ASENS_2008_4_41_5_743_0/
[1] On the automorphisms of certain subgroups of semi-simple Lie groups., in Algebraic Geometry (Internat. Colloq., Tata Inst. Fund. Res., Bombay, 1968), Oxford Univ. Press, 1969, 43-73. | MR 259020 | Zbl 0202.03201
,[2] Hecke algebras, type III factors and phase transitions with spontaneous symmetry breaking in number theory, Selecta Math. (N.S.) 1 (1995), 411-457. | Zbl 0842.46040
& ,[3] Groups with the minimal condition on centralizers, J. Algebra 60 (1979), 371-383. | MR 549936 | Zbl 0422.20022
,[4] Every group is an outer automorphism group of a finitely generated group, J. Pure Appl. Algebra 200 (2005), 137-147. | Zbl 1082.20021
& ,[5] A factor of type with countable fundamental group, J. Operator Theory 4 (1980), 151-153. | MR 587372 | Zbl 0455.46056
,[6] Noncommutative geometry, Academic Press Inc., 1994. | MR 1303779 | Zbl 0818.46076
,[7] An amenable equivalence relation is generated by a single transformation, Ergodic Theory Dynamical Systems 1 (1981), 431-450. | Zbl 0491.28018
, & ,[8] Centraliser dimension and universal classes of groups, Sib. Èlektron. Mat. Izv. 3 (2006), 197-215, arXiv:math/0502498. | Zbl 1118.20030
, & ,[9] Every compact group arises as the outer automorphism group of a factor, J. Funct. Anal. 254 (2008), 2317-2328. | Zbl 1153.46036
& ,[10] On Popa's cocycle superrigidity theorem, Int. Math. Res. Not. IMRN (2007), Art. ID rnm073. | MR 2359545 | Zbl 1134.46043
,[11] Construction of type II factors with prescribed countable fundamental group, arXiv:0704.3502, to appear in J. reine angew. Math. | MR 2560409 | Zbl 1209.46038
,[12] Rigidity results for wreath product factors, J. Funct. Anal. 252 (2007), 763-791. | MR 2360936 | Zbl 1134.46041
,[13] Amalgamated free products of weakly rigid factors and calculation of their symmetry groups, Acta Math. 200 (2008), 85-153. | Zbl 1149.46047
, & ,[14] Index for subfactors, Invent. Math. 72 (1983), 1-25. | MR 696688 | Zbl 0508.46040
,[15] Fundamentals of the theory of operator algebras. Vol. II, Pure and Appl. Math. 100, Academic Press Inc., 1986. | Zbl 0831.46060
& ,[16] On rings of operators, Ann. of Math. 37 (1936), 116-229. | Zbl 0014.16101
& ,[17] J. v. Neumann & E. P. Wigner, Minimally almost periodic groups, Ann. of Math. 41 (1940), 746-750. | JFM 66.0544.02 | Zbl 0025.10106
[18] Ergodic theory of amenable group actions. I. The Rohlin lemma, Bull. Amer. Math. Soc. (N.S.) 2 (1980), 161-164. | Zbl 0427.28018
& ,[19] Entropy and index for subfactors, Ann. Sci. École Norm. Sup. 19 (1986), 57-106. | Numdam | Zbl 0646.46057
& ,[20] Correspondences, INCREST preprint http://www.math.ucla.edu/~popa/popa-correspondences.pdf, 1986.
,[21] On a class of type factors with Betti numbers invariants, Ann. of Math. 163 (2006), 809-899. | MR 2215135 | Zbl 1120.46045
,[22] Strong rigidity of factors arising from malleable actions of -rigid groups I, Invent. Math. 165 (2006), 369-408. | MR 2231961 | Zbl 1120.46043
,[23] Strong rigidity of factors arising from malleable actions of -rigid groups II, Invent. Math. 165 (2006), 409-451. | MR 2231962 | Zbl 1120.46044
,[24] Cocycle and orbit equivalence superrigidity for malleable actions of -rigid groups, Invent. Math. 170 (2007), 243-295. | MR 2342637 | Zbl 1131.46040
,[25] Strong rigidity of generalized Bernoulli actions and computations of their symmetry groups, Adv. Math. 217 (2008), 833-872. | Zbl 1137.37003
& ,[26] O. Schreier & B. L. v. d. Waerden, Die Automorphismen der projektiven Gruppen, Abhandlungen Hamburg 6 (1928), 303-322. | JFM 54.0149.02
[27] Centralisateurs des éléments dans les groupes de Greendlinger, C. R. Acad. Sci. Paris 279 (1974), 317-319. | MR 384943 | Zbl 0291.20040
,[28] Rigidity results for Bernoulli actions and their von Neumann algebras (after Sorin Popa), Sém. Bourbaki, vol. 2005/2006, exposé no 961, Astérisque 311 (2007), 237-294. | Numdam | MR 2359046 | Zbl 1194.46085
,[29] Factors of type II without non-trivial finite index subfactors, Trans. of the AMS, in print. DOI: 10.1090/S0002-9947-08-04585-6. | Zbl 1172.46043
,