Dans ce travail, nous étudions des revêtements ramifiés d’arbres métriques simpliciaux qui sont obtenus à partir d’applications polynomiales possédant un ensemble de Julia non connexe. Nous montrons que la collection de tous ces arbres, à un facteur d’échelle près, forme un espace contractile qui compactifie l’espace des modules des polynômes de degré . Nous montrons aussi que enregistre le comportement asymptotique des multiplicateurs de et que toute famille méromorphe de polynômes définis sur peut être complétée par un unique arbre comme sa fibre centrale. Dans le cas cubique, nous donnons une énumération combinatoire des arbres ainsi obtenus et montrons que est lui-même un arbre.
In this paper we study branched coverings of metrized, simplicial trees which arise from polynomial maps with disconnected Julia sets. We show that the collection of all such trees, up to scale, forms a contractible space compactifying the moduli space of polynomials of degree ; that records the asymptotic behavior of the multipliers of ; and that any meromorphic family of polynomials over can be completed by a unique tree at its central fiber. In the cubic case we give a combinatorial enumeration of the trees that arise, and show that is itself a tree.
@article{ASENS_2008_4_41_3_337_0, author = {DeMarco, Laura G. and McMullen, Curtis T.}, title = {Trees and the dynamics of polynomials}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, volume = {41}, year = {2008}, pages = {337-383}, doi = {10.24033/asens.2070}, mrnumber = {2482442}, zbl = {1202.37067}, language = {en}, url = {http://dml.mathdoc.fr/item/ASENS_2008_4_41_3_337_0} }
DeMarco, Laura G.; McMullen, Curtis T. Trees and the dynamics of polynomials. Annales scientifiques de l'École Normale Supérieure, Tome 41 (2008) pp. 337-383. doi : 10.24033/asens.2070. http://gdmltest.u-ga.fr/item/ASENS_2008_4_41_3_337_0/
[1] Potential theory on the Berkovich projective line, in preparation.
& ,[2] Reduction, dynamics, and Julia sets of rational functions, J. Number Theory 86 (2001), 175-195. | MR 1813109 | Zbl 0978.37039
,[3] The iteration of cubic polynomials. I. The global topology of parameter space, Acta Math. 160 (1988), 143-206. | Zbl 0668.30008
& ,[4] The iteration of cubic polynomials. II. Patterns and parapatterns, Acta Math. 169 (1992), 229-325. | Zbl 0812.30008
& ,[5] Invariant sets under iteration of rational functions, Ark. Mat. 6 (1965), 103-144 (1965). | MR 194595 | Zbl 0127.03401
,[6] Realizability of branched coverings of surfaces, Trans. Amer. Math. Soc. 282 (1984), 773-790. | Zbl 0603.57001
, & ,[7] Dynamics of polynomials with disconnected Julia sets, Discrete Contin. Dyn. Syst. 9 (2003), 801-834. | MR 1975358 | Zbl 1047.37028
,[8] Brownian motion, random walks on trees, and harmonic measure on polynomial Julia sets, preprint, 2006.
,[9] Théorie ergodique des fractions rationnelles sur un corps ultramétrique, preprint, 2007. | Zbl 1254.37064
& ,[10] An invariant measure for rational maps, Bol. Soc. Brasil. Mat. 14 (1983), 45-62. | Zbl 0568.58027
, & ,[11] Structures métriques pour les variétés riemanniennes, Textes Mathématiques 1, CEDIC, 1981. | MR 682063 | Zbl 0509.53034
,[12] On the entropy of holomorphic maps, Enseign. Math. 49 (2003), 217-235. | MR 2026895 | Zbl 1080.37051
,[13] Turning curves for critically recurrent cubic polynomials, Nonlinearity 12 (1999), 411-418. | MR 1677771 | Zbl 0963.37040
,[14] Local connectivity of Julia sets and bifurcation loci: three theorems of J.-C. Yoccoz, in Topological methods in modern mathematics (Stony Brook, NY, 1991), Publish or Perish, 1993, 467-511. | MR 1215974 | Zbl 0797.58049
,[15] Puiseux series polynomial dynamics and iteration of complex cubic polynomials, Ann. Inst. Fourier (Grenoble) 56 (2006), 1337-1404. | Numdam | MR 2273859 | Zbl 1110.37036
,[16] Local connectivity and quasi-conformal rigidity of non-renormalizable polynomials, preprint, 2006. | Zbl 1196.37083
& ,[17] Quasiconformal mappings in the plane, second éd., Springer, 1973. | Zbl 0267.30016
& ,[18] Entropy properties of rational endomorphisms of the Riemann sphere, Ergodic Theory Dynam. Systems 3 (1983), 351-385. | MR 741393 | Zbl 0537.58035
,[19] Automorphisms of rational maps, in Holomorphic functions and moduli, Vol. I (Berkeley, CA, 1986), Math. Sci. Res. Inst. Publ. 10, Springer, 1988, 31-60. | MR 955807 | Zbl 0692.30035
,[20] The classification of conformal dynamical systems, in Current developments in mathematics, 1995 (Cambridge, MA), 323-360, Int. Press, Cambridge, MA, 1994. | MR 1474980 | Zbl 0908.30028
,[21] Complex dynamics and renormalization, Annals of Mathematics Studies 135, Princeton University Press, 1994. | MR 1312365 | Zbl 0822.30002
,[22] Ribbon -trees and holomorphic dynamics on the unit disk, preprint, 2007. | MR 2499437 | Zbl 1173.37043
,[23] Local connectivity of Julia sets: expository lectures, in The Mandelbrot set, theme and variations, London Math. Soc. Lecture Note Ser. 274, Cambridge Univ. Press, 2000, 67-116. | MR 1765085 | Zbl 1107.37305
,[24] Trees and hyperbolic geometry, in Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), Amer. Math. Soc., 1987, 590-597. | MR 934260 | Zbl 0681.57025
,[25] Valuations, trees, and degenerations of hyperbolic structures. I, Ann. of Math. 120 (1984), 401-476. | Zbl 0583.57005
& ,[26] An introduction to compactifying spaces of hyperbolic structures by actions on trees, in Geometry and topology (College Park, Md., 1983/84), Lecture Notes in Math. 1167, Springer, 1985, 228-240. | Zbl 0592.57007
& ,[27] Le théorème d'hyperbolisation pour les variétés fibrées de dimension 3, Astérisque 235 (1996). | Zbl 0855.57003
,[28] Entropy and generators in ergodic theory, W. A. Benjamin, Inc., New York-Amsterdam, 1969. | MR 262464 | Zbl 0175.34001
,[29] Topologie de Gromov équivariante, structures hyperboliques et arbres réels, Invent. Math. 94 (1988), 53-80. | MR 958589 | Zbl 0673.57034
,[30] Fixed points and circle maps, Acta Math. 179 (1997), 243-294. | MR 1607557 | Zbl 0914.58027
,[31] Dessins d'enfants and Hubbard trees, Ann. Sci. École Norm. Sup. 33 (2000), 671-693. | MR 1834499 | Zbl 1066.14503
,[32] Convergence and pre-images of limit points for coding trees for iterations of holomorphic maps, Math. Ann. 290 (1991), 425-440. | Zbl 0704.30035
& ,[33] Proof of the Branner-Hubbard conjecture on Cantor Julia sets, preprint, 2006. | Zbl 1187.37070
& ,[34] Dynamique des fonctions rationnelles sur des corps locaux, in Geometric methods in dynamics. II, Astérisque 287, 2003, 147-230. | MR 2040006 | Zbl 1140.37336
,[35] Points périodiques des fonctions rationnelles dans l’espace hyperbolique -adique, Comment. Math. Helv. 80 (2005), 593-629. | MR 2165204 | Zbl 1140.37337
,[36] Classification theory of Riemann surfaces, Die Grund. Math. Wiss., Band 164, Springer, 1970. | Zbl 0199.40603
& ,[37] Trees associated with the configuration of Herman rings, Ergodic Theory Dynam. Systems 9 (1989), 543-560. | MR 1016671 | Zbl 0688.30019
,[38] Riemann surfaces, Chelsea Publishing Co., 1981.
,[39] Genus 0 and 1 Hurwitz numbers: recursions, formulas, and graph-theoretic interpretations, Trans. Amer. Math. Soc. 353 (2001), 4025-4038. | MR 1837218 | Zbl 0980.14021
,