Équisingularité réelle II : invariants locaux et conditions de régularité
Comte, Georges ; Merle, Michel
Annales scientifiques de l'École Normale Supérieure, Tome 41 (2008), p. 221-269 / Harvested from Numdam

On définit, pour un germe d'ensemble sous-analytique, deux nouvelles suites finies d'invariants numériques. La première a pour termes les localisations des courbures de Lipschitz-Killing classiques, la seconde est l'équivalent réel des caractéristiques évanescentes complexes introduites par M. Kashiwara. On montre que chaque terme d'une de ces suites est combinaison linéaire des termes de l'autre, puis on relie ces invariants à la géométrie des discriminants des projections du germe sur des plans de toutes les dimensions. Il apparaît alors que ces invariants sont continus le long de strates de Verdier d'une stratification sous-analytique d'un fermé.

For germs of subanalytic sets, we define two finite sequences of new numerical invariants. The first one is obtained by localizing the classical Lipschitz-Killing curvatures, the second one is the real analogue of the vanishing Euler characteristics introduced by M. Kashiwara. We show that each invariant of one sequence is a linear combination of the invariants of the other sequence. We then connect our invariants to the geometry of the discriminants of all dimension. Finally we prove that these invariants are continuous along Verdier strata of a closed subanalytic set.

@article{ASENS_2008_4_41_2_221_0,
     author = {Comte, Georges and Merle, Michel},
     title = {\'Equisingularit\'e r\'eelle II : invariants locaux et conditions de r\'egularit\'e},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     volume = {41},
     year = {2008},
     pages = {221-269},
     doi = {10.24033/asens.2067},
     mrnumber = {2468482},
     zbl = {1163.32012},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/ASENS_2008_4_41_2_221_0}
}
Comte, Georges; Merle, Michel. Équisingularité réelle II : invariants locaux et conditions de régularité. Annales scientifiques de l'École Normale Supérieure, Tome 41 (2008) pp. 221-269. doi : 10.24033/asens.2067. http://gdmltest.u-ga.fr/item/ASENS_2008_4_41_2_221_0/

[1] A. Bernig & L. Bröcker, Lipschitz-Killing invariants, Math. Nachr. 245 (2002), 5-25. | Zbl 1074.53064

[2] A. Bernig & L. Bröcker, Courbures intrinsèques dans les catégories analytico-géométriques, Ann. Inst. Fourier (Grenoble) 53 (2003), 1897-1924. | Numdam | Zbl 1053.53053

[3] W. Blaschke, Vorlesungen über Integralgeometrie, 3e éd., Deutscher Verlag der Wissenschaften, 1955. | JFM 63.0675.04 | MR 76373 | Zbl 0066.40703

[4] V. G. Boltianskiĭ, Hilbert's third problem, John Wiley & Sons, 1978. | Zbl 0388.51001

[5] J. Briançon & J.-P. Speder, Les conditions de Whitney impliquent (μ * ) constant, Ann. Inst. Fourier (Grenoble) 26 (1976), 153-163. | Numdam | Zbl 0331.32012

[6] L. Bröcker & M. Kuppe, Integral geometry of tame sets, Geom. Dedicata 82 (2000), 285-323. | Zbl 1023.53057

[7] H. Brodersen & D. Trotman, Whitney (b)-regularity is weaker than Kuo’s ratio test for real algebraic stratifications, Math. Scand. 45 (1979), 27-34. | Zbl 0429.58001

[8] J.-L. Brylinski, A. S. Dubson & M. Kashiwara, Formule de l'indice pour modules holonomes et obstruction d'Euler locale, C. R. Acad. Sci. Paris Sér. I Math. 293 (1981), 573-576. | Zbl 0492.58021

[9] J. Cheeger, W. Müller & R. Schrader, Kinematic and tube formulas for piecewise linear spaces, Indiana Univ. Math. J. 35 (1986), 737-754. | Zbl 0615.53058

[10] G. Comte, Formule de Cauchy-Crofton pour la densité des ensembles sous-analytiques, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), 505-508. | MR 1679984 | Zbl 0945.32019

[11] G. Comte, Équisingularité réelle : nombres de Lelong et images polaires, Ann. Sci. École Norm. Sup. 33 (2000), 757-788. | Numdam | MR 1832990 | Zbl 0981.32018

[12] G. Comte, J.-M. Lion & J.-P. Rolin, Nature log-analytique du volume des sous-analytiques, Illinois J. Math. 44 (2000), 884-888. | Zbl 0982.32009

[13] R. N. Draper, Intersection theory in analytic geometry, Math. Ann. 180 (1969), 175-204. | MR 247134 | Zbl 0157.40502

[14] L. v. d. Dries, Tame topology and o-minimal structures, London Mathematical Society Lecture Note Series 248, Cambridge University Press, 1998. | MR 1633348 | Zbl 0953.03045

[15] L. v. d. Dries & C. Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), 497-540. | Zbl 0889.03025

[16] A. S. Dubson, Classes caractéristiques des variétés singulières, C. R. Acad. Sci. Paris Sér. A-B 287 (1978), A237-A240. | MR 499290 | Zbl 0387.14005

[17] A. S. Dubson, Calcul des invariants numériques des singularités et des applications, Thèse, Unversität Bonn, 1981.

[18] H. Federer, The (ϕ,k) rectifiable subsets of n-space, Trans. Amer. Soc. 62 (1947), 114-192. | MR 22594 | Zbl 0032.14902

[19] H. Federer, Curvature measures, Trans. Amer. Math. Soc. 93 (1959), 418-491. | MR 110078 | Zbl 0089.38402

[20] H. Federer, Geometric measure theory, Die Grund. Math. Wiss., Band 153, Springer New York Inc., New York, 1969. | MR 257325 | Zbl 0176.00801

[21] J. H. G. Fu, Tubular neighborhoods in Euclidean spaces, Duke Math. J. 52 (1985), 1025-1046. | MR 816398 | Zbl 0592.52002

[22] J. H. G. Fu, Curvature measures and generalized Morse theory, J. Differential Geom. 30 (1989), 619-642. | MR 1021369 | Zbl 0722.53064

[23] J. H. G. Fu, Kinematic formulas in integral geometry, Indiana Univ. Math. J. 39 (1990), 1115-1154. | MR 1087187 | Zbl 0703.53059

[24] J. H. G. Fu, Curvature of singular spaces via the normal cycle, in Differential geometry : geometry in mathematical physics and related topics (Los Angeles, CA, 1990), Proc. Sympos. Pure Math. 54, Amer. Math. Soc., 1993, 211-221. | MR 1216541 | Zbl 0796.53070

[25] J. H. G. Fu, Curvature measures of subanalytic sets, Amer. J. Math. 116 (1994), 819-880. | MR 1287941 | Zbl 0818.53091

[26] M. Goresky & R. Macpherson, Stratified Morse theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 14, Springer, 1988. | Zbl 0639.14012

[27] P. M. Gruber & R. Schneider, Problems in geometric convexity, in Contributions to geometry (Proc. Geom. Sympos., Siegen, 1978), Birkhäuser, 1979, 255-278. | Zbl 0433.52001

[28] H. Hadwiger, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Springer, 1957. | MR 102775 | Zbl 0078.35703

[29] R. M. Hardt, Stratification of real analytic mappings and images, Invent. Math. 28 (1975), 193-208. | MR 372237 | Zbl 0298.32003

[30] R. M. Hardt, Semi-algebraic local-triviality in semi-algebraic mappings, Amer. J. Math. 102 (1980), 291-302. | MR 564475 | Zbl 0465.14012

[31] J.-P. Henry & M. Merle, Limites de normales, conditions de Whitney et éclatement d'Hironaka, in Singularities, Part 1 (Arcata, Calif., 1981), Proc. Sympos. Pure Math. 40, Amer. Math. Soc., 1983, 575-584. | Zbl 0554.32010

[32] J.-P. Henry & M. Merle, Conditions de régularité et éclatements, Ann. Inst. Fourier (Grenoble) 37 (1987), 159-190. | Numdam | Zbl 0596.32018

[33] J.-P. Henry, M. Merle & C. Sabbah, Sur la condition de Thom stricte pour un morphisme analytique complexe, Ann. Sci. École Norm. Sup. 17 (1984), 227-268. | Numdam | Zbl 0551.32012

[34] H. Hironaka, Normal cones in analytic Whitney stratifications, Publ. Math. I.H.É.S. 36 (1969), 127-138. | Numdam | MR 277759 | Zbl 0219.57022

[35] H. Hironaka, Subanalytic sets, in Number theory, algebraic geometry and commutative algebra, in honor of Yasuo Akizuki, Kinokuniya, 1973, 453-493. | MR 377101 | Zbl 0297.32008

[36] H. Hironaka, Stratification and flatness, in Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), Sijthoff and Noordhoff, 1977, 199-265. | MR 499286 | Zbl 0424.32004

[37] M. Kashiwara, Index theorem for a maximally overdetermined system of linear differential equations, Proc. Japan Acad. 49 (1973), 803-804. | MR 368085 | Zbl 0305.35073

[38] M. Kashiwara, B-functions and holonomic systems. Rationality of roots of B-functions, Invent. Math. 38 (1976/77), 33-53. | MR 430304 | Zbl 0354.35082

[39] D. A. Klain, A short proof of Hadwiger's characterization theorem, Mathematika 42 (1995), 329-339. | MR 1376731 | Zbl 0835.52010

[40] J. F. Knight, A. Pillay & C. Steinhorn, Definable sets in ordered structures II, Trans. Amer. Math. Soc. 295 (1986), 593-605. | Zbl 0662.03024

[41] T.-C. Kuo, The ratio test for analytic Whitney stratifications, in Proceedings of Liverpool Singularities-Symposium, I (1969/70), Lecture Notes in Math., Vol. 192, Springer, 1971, 141-149. | MR 279333 | Zbl 0246.32006

[42] M. Kuppe, Integralgeometrie Whitney-stratifizierbarer Mengen, Thèse, Universität Münster, 1999. | Zbl 0946.53041

[43] K. Kurdyka, J.-B. Poly & G. Raby, Moyennes des fonctions sous-analytiques, densité, cône tangent et tranches, in Real analytic and algebraic geometry (Trento, 1988), Lecture Notes in Math. 1420, Springer, 1990, 170-177. | Zbl 0694.32001

[44] K. Kurdyka & G. Raby, Densité des ensembles sous-analytiques, Ann. Inst. Fourier (Grenoble) 39 (1989), 753-771. | Numdam | Zbl 0673.32015

[45] J. Lafontaine, Mesures de courbure des variétés lisses et des polyèdres (d'après Cheeger-Müller et Schröder), Séminaire Bourbaki, Vol. 1985/86, Exp. no 664, Astérisque 145-146 (1987), 241-256. | Numdam | MR 880036 | Zbl 0613.53031

[46] R. Langevin, Introduction to integral geometry, 21o Colóquio Brasileiro de Matemática, Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 1997. | MR 1718700 | Zbl 0939.53001

[47] R. Langevin, La petite musique de la géométrie intégrale, in La recherche de la vérité, Écrit. Math., ACL-Éd. Kangourou, Paris, 1999, 117-143. | MR 1752518 | Zbl 0981.01001

[48] R. Langevin & T. Shifrin, Polar varieties and integral geometry, Amer. J. Math. 104 (1982), 553-605. | Zbl 0504.53048

[49] P. Lelong, Intégration sur un ensemble analytique complexe, Bull. Soc. Math. France 85 (1957), 239-262. | Numdam | MR 95967 | Zbl 0079.30901

[50] J.-M. Lion, Densité des ensembles semi-pfaffiens, Ann. Fac. Sci. Toulouse Math. 7 (1998), 87-92. | Numdam | MR 1658448 | Zbl 0917.32003

[51] J.-M. Lion & J.-P. Rolin, Intégration des fonctions sous-analytiques et volumes des sous-ensembles sous-analytiques, Ann. Inst. Fourier (Grenoble) 48 (1998), 755-767. | Numdam | Zbl 0912.32007

[52] T. L. Loi, Verdier and strict Thom stratifications in o-minimal structures, Illinois J. Math. 42 (1998), 347-356. | MR 1612771 | Zbl 0909.32008

[53] R. Macpherson, Chern classes for singular algebraic varieties, Ann. of Math. 100 (1974), 423-432. | MR 361141 | Zbl 0311.14001

[54] J. Mather, Notes on topological stability, Harvard University, 1970. | Zbl 1260.57049

[55] P. Mcmullen & R. Schneider, Valuations on convex bodies, in Convexity and its applications, Birkhäuser, 1983, 170-247. | Zbl 0534.52001

[56] M. Merle, Variétés polaires, stratifications de Whitney et classes de Chern des espaces analytiques complexes (d'après Lê-Teissier), Séminaire Bourbaki, Vol. 1982/83, Exp. no 600, Astérisque 105 (1983), 65-78. | Numdam | MR 728981 | Zbl 0551.32011

[57] V. Navarro Aznar, Conditions de Whitney et sections planes, Invent. Math. 61 (1980), 199-225. | MR 592691 | Zbl 0449.32013

[58] V. Navarro Aznar, Stratifications régulières et variétés polaires locales, manuscrit, 1981.

[59] V. Navarro Aznar & D. Trotman, Whitney regularity and generic wings, Ann. Inst. Fourier (Grenoble) 31 (1981), 87-111. | Numdam | Zbl 0442.58002

[60] P. Orro, Conditions de régularité, espaces tangents et fonctions de Morse, Thèse, Université d'Orsay, 1984.

[61] P. Orro & D. Trotman, On the regular stratifications and conormal structure of subanalytic sets, Bull. London Math. Soc. 18 (1986), 185-191. | Zbl 0585.32006

[62] A. Pillay & C. Steinhorn, Definable sets in ordered structures. I, Trans. Amer. Math. Soc. 295 (1986), 565-592. | Zbl 0662.03023

[63] C. H. Sah, Hilbert's third problem : scissors congruence, Research Notes in Math. 33, Pitman (Advanced Publishing Program), 1979. | MR 554756 | Zbl 0406.52004

[64] L. A. Santaló, Integral geometry and geometric probability, Encyclopedia of Mathematics and its Applications, Vol. 1, Addison-Wesley, 1976. | MR 433364 | Zbl 0342.53049

[65] W. Schickhoff, Whitneysche Tangentenkegel, Multiplizitätsverhalten, Normal-Pseudoflachheit und Äquisingularitätstheorie für Ramissche Räume, Schr. Math. Inst. Univ. Münster Heft 12 (1977).

[66] R. Schneider, Curvature measures of convex bodies, Ann. Mat. Pura Appl. 116 (1978), 101-134. | MR 506976 | Zbl 0389.52006

[67] R. Schneider, A uniqueness theorem for finitely additive invariant measures on a compact homogeneous space, Rend. Circ. Mat. Palermo 30 (1981), 341-344. | MR 656895 | Zbl 0484.28010

[68] R. Schneider, Integral geometry - Measure theoretic approach and stochastic applications, Advanced course on integral geometry, CRM, 1984. | Zbl 0789.52009

[69] R. Schneider, Convex bodies : the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications 44, Cambridge University Press, 1993. | MR 1216521 | Zbl 0798.52001

[70] M. Shiota, Geometry of subanalytic and semialgebraic sets, Progress in Mathematics 150, Birkhäuser, 1997. | MR 1463945 | Zbl 0889.32006

[71] J. Steiner, Über parallele Flächen, Monatsber. Preuß. Akad. Wissen. Berlin (1840), 114-118, Ges. Werke, vol. 2 (1882), Reimer, Berlin, 171-176.

[72] J. Steiner, Von dem Krümmungsschwerpunkte ebener Curven, J. reine angew. Mathematik 21 (1840), 33-63, Ges. Werke, vol. 2 (1882), Reimer, Berlin, 99-159. | Zbl 021.0657cj

[73] B. Teissier, Cycles évanescents, sections planes et conditions de Whitney, in Singularités à Cargèse (Rencontre Singularités Géom. Anal., Inst. Études Sci., Cargèse, 1972), Astérisque, 7-8, Soc. Math. France, 1973, 285-362. | MR 374482 | Zbl 0295.14003

[74] B. Teissier, Variétés polaires II. Multiplicités polaires, sections planes, et conditions de Whitney, in Algebraic geometry (La Rábida, 1981), Lecture Notes in Math. 961, Springer, 1982, 314-491. | MR 708342 | Zbl 0585.14008

[75] R. Thom, Ensembles et morphismes stratifiés, Bull. Amer. Math. Soc. 75 (1969), 240-284. | MR 239613 | Zbl 0197.20502

[76] L. D. Tráng & B. Teissier, Variétés polaires locales et classes de Chern des variétés singulières, Ann. of Math. 114 (1981), 457-491. | Zbl 0488.32004

[77] L. D. Tráng & B. Teissier, Errata : “Local polar varieties and Chern classes of singular varieties”, Ann. of Math. 115 (1982), 668. | Zbl 0496.32004

[78] L. D. Tráng & B. Teissier, Cycles evanescents, sections planes et conditions de Whitney II, in Singularities, Part 2 (Arcata, Calif., 1981), Proc. Sympos. Pure Math. 40, Amer. Math. Soc., 1983, 65-103. | Zbl 0532.32003

[79] D. Trotman, Counterexamples in stratification theory : two discordant horns, in Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), Sijthoff and Noordhoff, 1977, 679-686. | MR 461525 | Zbl 0378.57012

[80] D. Trotman, Comparing regularity conditions on stratifications, in Singularities, Part 2 (Arcata, Calif., 1981), Proc. Sympos. Pure Math. 40, Amer. Math. Soc., 1983, 575-586. | MR 713282 | Zbl 0519.58009

[81] G. Valette, Détermination et stabilité du type métrique des singularités, Thèse, Université de Provence, 2003.

[82] G. Valette, Volume, density and Whitney conditions, à paraître dans Ann. Pol. Math..

[83] J.-L. Verdier, Stratifications de Whitney et théorème de Bertini-Sard, Invent. Math. 36 (1976), 295-312. | MR 481096 | Zbl 0333.32010

[84] H. Weyl, On the Volume of Tubes, Amer. J. Math. 61 (1939), 461-472. | JFM 65.0796.01 | MR 1507388

[85] O. Zariski, Studies in equisingularity. I. Equivalent singularities of plane algebroid curves, Amer. J. Math. 87 (1965), 507-536. | MR 177985 | Zbl 0132.41601

[86] O. Zariski, Studies in equisingularity II 87 (1965), 972-1006. | MR 191898 | Zbl 0146.42502

[87] O. Zariski, Studies in equisingularity III. Saturation of local rings and equisingularity, Amer. J. Math. 90 (1968), 961-1023. | MR 237493 | Zbl 0189.21405

[88] O. Zariski, Some open questions in the theory of singularities, Bull. Amer. Math. Soc. 77 (1971), 481-491. | MR 277533 | Zbl 0236.14002

[89] O. Zariski, On equimultiple subvarieties of algebroid hypersurfaces, Proc. Nat. Acad. Sci. U.S.A. 72 (1975), 1425-1426, Correction : Proc. Nat. Acad. Sci. U.S.A. 72 (1975), 3260. | MR 389894 | Zbl 0304.14008

[90] O. Zariski, Foundations of a general theory of equisingularity on r-dimensional algebroid and algebraic varieties, of embedding dimension r+1, Amer. J. Math. 101 (1979), 453-514. | MR 528001 | Zbl 0417.14008