@article{ASENS_2007_4_40_6_901_0, author = {Roesch, Pascale}, title = {Hyperbolic components of polynomials with a fixed critical point of maximal order}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, volume = {40}, year = {2007}, pages = {901-949}, doi = {10.1016/j.ansens.2007.10.001}, mrnumber = {2419853}, zbl = {1151.37044}, language = {en}, url = {http://dml.mathdoc.fr/item/ASENS_2007_4_40_6_901_0} }
Roesch, Pascale. Hyperbolic components of polynomials with a fixed critical point of maximal order. Annales scientifiques de l'École Normale Supérieure, Tome 40 (2007) pp. 901-949. doi : 10.1016/j.ansens.2007.10.001. http://gdmltest.u-ga.fr/item/ASENS_2007_4_40_6_901_0/
[1] Lectures on Quasi-Conformal Mappings, Wadsworth & Brook/Cole, Advanced Books & Software, Monterey, 1987.
,[2] Complex analytic dynamics on the Riemann sphere, Bull. Amer. Math. Soc. 11 (1984) 85-141. | MR 741725 | Zbl 0558.58017
,[3] Puzzles and para-puzzles of quadratic and cubic polynomials, Proc. Symp. Appl. Math. 49 (1994) 31-69. | MR 1315533 | Zbl 0853.58087
,[4] The iteration of cubic polynomials, Part. 1: The global topology of the parameter space, Acta Math. 160 (1988) 143-206. | MR 945011 | Zbl 0668.30008
, ,[5] Douady A., Hubbard J.H., Étude dynamique des polynômes complexes I & II, Publ. Math. d'Orsay (1984) & (1985). | Zbl 0552.30018
[6] On the dynamics of polynomial-like mappings, Ann. Sci. Éc. Norm. Sup. 18 (1985) 287-343. | Numdam | MR 816367 | Zbl 0587.30028
, ,[7] Faught D., Local connectivity in a family of cubic polynomials, Ph.D. Thesis, Cornell University, 1992.
[8] Fixed points of polynomial maps. Part II. Fixed point portraits, Ann. Sci. Éc. Norm. Sup. 26 (1993) 51-98. | Numdam | MR 1209913 | Zbl 0771.30028
, ,[9] Local connectivity of Julia sets and bifurcation loci: three theorems of J.-C. Yoccoz, in: , (Eds.), Topological Methods in Modern Mathematics, Publish or Perish, 1993, pp. 467-511. | MR 1215974 | Zbl 0797.58049
,[10] External rays to periodic points, Israel J. Math. 94 (1996) 29-57. | MR 1394566 | Zbl 0854.30020
, ,[11] The Mandelbrot set is universal, in: (Ed.), The Mandelbrot Set, Theme and Variations, LMS Lecture Note Series, vol. 274, Cambridge U. Press, 2000. | MR 1765082 | Zbl 1062.37042
,[12] Dynamics in One Complex Variable, Vieweg, 1999, 2nd ed. 2000. | MR 1721240 | Zbl 0946.30013
,[13] Local connectivity of Julia sets: Expository lectures, in: (Ed.), The Mandelbrot Set, Theme and Variations, LMS Lecture Note Series, vol. 274, Cambridge U. Press, 2000, pp. 67-116. | MR 1765085 | Zbl 1107.37305
,[14] Milnor J., On cubic polynomial maps with periodic critical point, preprint (1991), to be published dedicated to JHH.
[15] Topological invariants of analytic and area-preserving mappings and their application to analytic differential equations in and , Trans. Moscow Math. Soc. 42 (1983) 239-250. | MR 656288 | Zbl 0527.58035
,[16] On the Pommerenke-Levin-Yoccoz inequality, Ergod. Th. & Dynam. Sys. 13 (1993) 785-806. | Zbl 0802.30022
,[17] Puzzles de Yoccoz pour les applications à allure rationnelle, L'Enseignement Mathématique 45 (1999) 133-168. | MR 1703365 | Zbl 0977.37023
,[18] Holomorphic motions and puzzles (following M. Shishikura), in: (Ed.), The Mandelbrot Set, Theme and Variations, LMS Lecture Note Series, vol. 274, Cambridge U. Press, 2000, pp. 117-132. | MR 1765086 | Zbl 1063.37042
,[19] Extensions of holomorphic motions, Ann. Scuola Norm. Sup. Cl. Sci. 22 (1995) 185-210. | Numdam | Zbl 0835.30012
,[20] Petits diviseurs en dimension 1, Astérisque 231 (1995). | Zbl 0836.30001
,