Hyperbolic components of polynomials with a fixed critical point of maximal order
Roesch, Pascale
Annales scientifiques de l'École Normale Supérieure, Tome 40 (2007), p. 901-949 / Harvested from Numdam
@article{ASENS_2007_4_40_6_901_0,
     author = {Roesch, Pascale},
     title = {Hyperbolic components of polynomials with a fixed critical point of maximal order},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     volume = {40},
     year = {2007},
     pages = {901-949},
     doi = {10.1016/j.ansens.2007.10.001},
     mrnumber = {2419853},
     zbl = {1151.37044},
     language = {en},
     url = {http://dml.mathdoc.fr/item/ASENS_2007_4_40_6_901_0}
}
Roesch, Pascale. Hyperbolic components of polynomials with a fixed critical point of maximal order. Annales scientifiques de l'École Normale Supérieure, Tome 40 (2007) pp. 901-949. doi : 10.1016/j.ansens.2007.10.001. http://gdmltest.u-ga.fr/item/ASENS_2007_4_40_6_901_0/

[1] Alhfors L.V., Lectures on Quasi-Conformal Mappings, Wadsworth & Brook/Cole, Advanced Books & Software, Monterey, 1987.

[2] Blanchard P., Complex analytic dynamics on the Riemann sphere, Bull. Amer. Math. Soc. 11 (1984) 85-141. | MR 741725 | Zbl 0558.58017

[3] Branner B., Puzzles and para-puzzles of quadratic and cubic polynomials, Proc. Symp. Appl. Math. 49 (1994) 31-69. | MR 1315533 | Zbl 0853.58087

[4] Branner B., Hubbard J.H., The iteration of cubic polynomials, Part. 1: The global topology of the parameter space, Acta Math. 160 (1988) 143-206. | MR 945011 | Zbl 0668.30008

[5] Douady A., Hubbard J.H., Étude dynamique des polynômes complexes I & II, Publ. Math. d'Orsay (1984) & (1985). | Zbl 0552.30018

[6] Douady A., Hubbard J.H., On the dynamics of polynomial-like mappings, Ann. Sci. Éc. Norm. Sup. 18 (1985) 287-343. | Numdam | MR 816367 | Zbl 0587.30028

[7] Faught D., Local connectivity in a family of cubic polynomials, Ph.D. Thesis, Cornell University, 1992.

[8] Goldberg L.R., Milnor J., Fixed points of polynomial maps. Part II. Fixed point portraits, Ann. Sci. Éc. Norm. Sup. 26 (1993) 51-98. | Numdam | MR 1209913 | Zbl 0771.30028

[9] Hubbard J.H., Local connectivity of Julia sets and bifurcation loci: three theorems of J.-C. Yoccoz, in: Goldberg L.R., Phillips V.A. (Eds.), Topological Methods in Modern Mathematics, Publish or Perish, 1993, pp. 467-511. | MR 1215974 | Zbl 0797.58049

[10] Levin G., Przytycki F., External rays to periodic points, Israel J. Math. 94 (1996) 29-57. | MR 1394566 | Zbl 0854.30020

[11] Mc Mullen C., The Mandelbrot set is universal, in: Lei Tan (Ed.), The Mandelbrot Set, Theme and Variations, LMS Lecture Note Series, vol. 274, Cambridge U. Press, 2000. | MR 1765082 | Zbl 1062.37042

[12] Milnor J., Dynamics in One Complex Variable, Vieweg, 1999, 2nd ed. 2000. | MR 1721240 | Zbl 0946.30013

[13] Milnor J., Local connectivity of Julia sets: Expository lectures, in: Lei Tan (Ed.), The Mandelbrot Set, Theme and Variations, LMS Lecture Note Series, vol. 274, Cambridge U. Press, 2000, pp. 67-116. | MR 1765085 | Zbl 1107.37305

[14] Milnor J., On cubic polynomial maps with periodic critical point, preprint (1991), to be published dedicated to JHH.

[15] Naĭshul' V.A., Topological invariants of analytic and area-preserving mappings and their application to analytic differential equations in C 2 and CP 2 , Trans. Moscow Math. Soc. 42 (1983) 239-250. | MR 656288 | Zbl 0527.58035

[16] Petersen C.L., On the Pommerenke-Levin-Yoccoz inequality, Ergod. Th. & Dynam. Sys. 13 (1993) 785-806. | Zbl 0802.30022

[17] Roesch P., Puzzles de Yoccoz pour les applications à allure rationnelle, L'Enseignement Mathématique 45 (1999) 133-168. | MR 1703365 | Zbl 0977.37023

[18] Roesch P., Holomorphic motions and puzzles (following M. Shishikura), in: Lei Tan (Ed.), The Mandelbrot Set, Theme and Variations, LMS Lecture Note Series, vol. 274, Cambridge U. Press, 2000, pp. 117-132. | MR 1765086 | Zbl 1063.37042

[19] Słodkowski Z., Extensions of holomorphic motions, Ann. Scuola Norm. Sup. Cl. Sci. 22 (1995) 185-210. | Numdam | Zbl 0835.30012

[20] Yoccoz J.-C., Petits diviseurs en dimension 1, Astérisque 231 (1995). | Zbl 0836.30001