@article{ASENS_2007_4_40_5_765_0, author = {Lewis, John L. and Nystr\"om, Kaj}, title = {Boundary behaviour for $p$ harmonic functions in Lipschitz and starlike Lipschitz ring domains}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, volume = {40}, year = {2007}, pages = {765-813}, doi = {10.1016/j.ansens.2007.09.001}, zbl = {1134.31008}, language = {en}, url = {http://dml.mathdoc.fr/item/ASENS_2007_4_40_5_765_0} }
Lewis, John L.; Nyström, Kaj. Boundary behaviour for $p$ harmonic functions in Lipschitz and starlike Lipschitz ring domains. Annales scientifiques de l'École Normale Supérieure, Tome 40 (2007) pp. 765-813. doi : 10.1016/j.ansens.2007.09.001. http://gdmltest.u-ga.fr/item/ASENS_2007_4_40_5_765_0/
[1] Carleson type estimates for p harmonic functions and the conformal Martin boundary of John domains in metric measure spaces, Michigan Math. J. 53 (1) (2005) 165-188. | MR 2125540 | Zbl 1076.31006
, ,[2] Aikawa H., Kilpeläinen T., Shanmugalingam N., Zhong X., Boundary Harnack principle for p harmonic functions in smooth Euclidean domains, submitted for publication. | Zbl 1121.35060
[3] Existence and regularity for a minimum problem with free boundary, J. reine angew. Math. 325 (1981) 105-144. | MR 618549 | Zbl 0449.35105
, ,[4] Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien, Ann. Inst. Fourier (Grenoble) 28 (4) (1978) 169-213. | Numdam | MR 513885 | Zbl 0377.31001
,[5] On the dimension of p harmonic measure, Ann. Acad. Sci. Fenn. 30 (2005) 459-505. | MR 2173375 | Zbl pre02223093
, ,[6] On weak reverse Hölder inequalities for nondoubling harmonic measures, Complex Variables 49 (7-9) (2004) 571-582. | Zbl 1068.31001
, ,[7] A Harnack inequality approach to the regularity of free boundaries. Part I. Lipschitz free boundaries are , Rev. Math. Iberoamericana 3 (1987) 139-162. | MR 990856 | Zbl 0676.35085
,[8] A Harnack inequality approach to the regularity of free boundaries. II. Flat free boundaries are Lipschitz, Comm. Pure Appl. Math. 42 (1) (1989) 55-78. | MR 973745 | Zbl 0676.35086
,[9] A Harnack inequality approach to the regularity of free boundaries. III. Existence theory, compactness, and dependence on X, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 15 (4) (1989) 583-602. | Numdam | MR 1029856
,[10] Boundary behavior of nonnegative solutions of elliptic operators in divergence form, Indiana J. Math. 30 (4) (1981) 621-640. | MR 620271 | Zbl 0512.35038
, , , ,[11] Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974) 241-250. | MR 358205 | Zbl 0291.44007
, ,[12] On estimates of harmonic measure, Arch. Ration. Mech. Anal. 65 (1977) 275-288. | MR 466593 | Zbl 0406.28009
,[13] local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. 7 (1983) 827-850. | MR 709038 | Zbl 0539.35027
,[14] Uniform limits of certain A-harmonic functions with applications to quasiregular mappings, Ann. Acad. Sci. Fenn. AI, Math. 16 (1991) 361-375. | MR 1139803 | Zbl 0727.35022
, ,[15] The local regularity of solutions to degenerate elliptic equations, Comm. Partial Differential Equations 7 (1) (1982) 77-116. | MR 643158 | Zbl 0498.35042
, , ,[16] The Wiener test for degenerate elliptic equations, Ann. Inst. Fourier (Grenoble) 32 (3) (1982) 151-182. | Numdam | MR 688024 | Zbl 0488.35034
, , ,[17] Boundary behavior of solutions to degenerate elliptic equations, in: Conference on Harmonic Analysis in Honor of Antonio Zygmund, vols. I, II, Chicago, IL, 1981, Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983, pp. 577-589. | MR 730093 | Zbl 0503.35038
, , ,[18] On the integrability of the derivatives of a quasiconformal mapping, Acta Math. 130 (1973) 265-277. | MR 402038 | Zbl 0258.30021
,[19] A regularity condition at the boundary for solutions of quasilinear elliptic equations, Arch. Ration. Mech. Anal. 67 (1977) 25-39. | MR 492836 | Zbl 0389.35023
, ,[20] Elliptic Partial Differential Equations of Second Order, second ed., Springer-Verlag, 1983. | MR 737190 | Zbl 0562.35001
, ,[21] Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford University Press, 1993. | MR 1207810 | Zbl 0780.31001
, , ,[22] The Dirichlet problem for parabolic operators with singular drift term, Mem. Amer. Math. Soc. 151 (719) (2001) 1-113. | MR 1828387 | Zbl pre01606458
, ,[23] Regularity of the Poisson kernel and free boundary problems, Colloq. Math. 60-61 (1990) 547-567. | Zbl 0732.35025
,[24] Boundary behavior of harmonic functions in nontangentially accessible domains, Adv. Math. 46 (1982) 80-147. | MR 676988 | Zbl 0514.31003
, ,[25] The logarithm of the Poisson kernel of a domain has vanishing mean oscillation, Trans. Amer. Math. Soc. 273 (1984) 781-794. | MR 667174 | Zbl 0494.31003
, ,[26] A boundary Harnack inequality for Lipschitz domains and the principle of positive singularities, Comm. Pure Appl. Math. 25 (1972) 247-255. | MR 293114 | Zbl 0226.31007
,[27] Harmonic measure on locally flat domains, Duke Math. J. 87 (1997) 501-551. | MR 1446617 | Zbl 0878.31002
, ,[28] Free boundary regularity for harmonic measure and Poisson kernels, Ann. of Math. 150 (1999) 369-454. | MR 1726699 | Zbl 0946.31001
, ,[29] Poisson kernel characterization of Reifenberg flat chord arc domains, Ann. Sci. Ecole Norm. Sup. (4) 36 (3) (2003) 323-401. | Numdam | MR 1977823 | Zbl 1027.31005
, ,[30] Kenig C., Toro T., Free boundary regularity below the continuous threshold: 2-phase problems, submitted for publication. | Zbl 1106.35147
[31] The Dirichlet problem for elliptic operators with drift term, Publ. Mat. 45 (1) (2001) 199-217. | MR 1829584 | Zbl 1113.35314
, ,[32] Growth of entire A-subharmonic functions, Ann. Acad. Sci. Fenn. AI, Math. 28 (2003) 181-192. | MR 1976839 | Zbl 1018.35027
, ,[33] On the behavior of the solutions of a quasilinear equation near null salient points of the boundary, Proc. Steklov Inst. Math. 125 (1973) 130-136. | MR 344671 | Zbl 0306.35047
,[34] Uniqueness in a free boundary problem, Comm. Partial Differential Equations 31 (2006) 1591-1614. | MR 2273966 | Zbl pre05127571
, ,[35] Lewis J., Vogel A., Symmetry problems and uniform rectifiability, submitted for publication.
[36] Note on p harmonic measure, Comput. Methods Funct. Theory 6 (1) (2006) 109-144. | MR 2241036 | Zbl pre05043055
,[37] Regularity of the derivatives of solutions to certain degenerate elliptic equations, Indiana Univ. Math. J. 32 (6) (1983) 849-858. | MR 721568 | Zbl 0554.35048
,[38] Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (11) (1988) 1203-1219. | MR 969499 | Zbl 0675.35042
,[39] Regular points for elliptic equations with discontinuous coefficients, Ann. Scuola Norm. Sup. Pisa (3) 17 (1963) 43-77. | Numdam | MR 161019 | Zbl 0116.30302
, , ,[40] Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, 1995. | MR 1333890 | Zbl 0819.28004
,[41] Local behavior of solutions of quasilinear elliptic equations, Acta Math. 111 (1964) 247-302. | MR 170096 | Zbl 0128.09101
,[42] Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, NJ, 1970. | MR 290095 | Zbl 0207.13501
,[43] Everywhere regularity for some quasi-linear systems with lack of ellipticity, Ann. Math. Pura Appl. 134 (4) (1984) 241-266. | MR 736742 | Zbl 0538.35034
,[44] Comparisons of kernel functions, boundary Harnack principle and relative Fatou theorem on Lipschitz domains, Ann. Inst. Fourier (Grenoble) 28 (4) (1978) 147-167. | Numdam | MR 513884 | Zbl 0368.31006
,