@article{ASENS_2007_4_40_1_1_0, author = {de La Bret\`eche, R\'egis and Browning, Tim D. and Derenthal, Ulrich}, title = {On Manin's conjecture for a certain singular cubic surface}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, volume = {40}, year = {2007}, pages = {1-50}, doi = {10.1016/j.ansens.2006.12.002}, zbl = {1125.14008}, language = {en}, url = {http://dml.mathdoc.fr/item/ASENS_2007_4_40_1_1_0} }
de La Bretèche, Régis; Browning, Tim D.; Derenthal, Ulrich. On Manin's conjecture for a certain singular cubic surface. Annales scientifiques de l'École Normale Supérieure, Tome 40 (2007) pp. 1-50. doi : 10.1016/j.ansens.2006.12.002. http://gdmltest.u-ga.fr/item/ASENS_2007_4_40_1_1_0/
[1] Tamagawa numbers of polarized algebraic varieties, Astérisque 251 (1998) 299-340. | MR 1679843 | Zbl 0926.11045
, ,[2] Sur le nombre de points de hauteur bornée d'une certaine surface cubique singulière, Astérisque 251 (1998) 51-77. | Zbl 0969.14014
,[3] de la Bretèche R., Browning T.D., On Manin's conjecture for singular del Pezzo surfaces of degree four, I, Michigan Math. J., in press. | Zbl 1132.14019
[4] de la Bretèche R., Browning T.D., On Manin's conjecture for singular del Pezzo surfaces of degree four, II, Math. Proc. Camb. Phil. Soc., in press. | Zbl 1132.14020
[5] The density of rational points on a certain singular cubic surface, J. Number Theory 119 (2006) 242-283. | MR 2250046 | Zbl 1119.11034
,[6] On the classification of cubic surfaces, J. London Math. Soc. 19 (1979) 245-256. | MR 533323 | Zbl 0393.14007
, ,[7] On the distribution of points of bounded height on equivariant compactifications of vector groups, Invent. Math. 148 (2002) 421-452. | MR 1906155 | Zbl 1067.11036
, ,[8] Manin's conjecture for a certain singular cubic surface, math.NT/0504016.
,[9] Rational points of bounded height on Fano varieties, Invent. Math. 95 (1989) 421-435. | MR 974910 | Zbl 0674.14012
, , ,[10] Universal torsors and Cox rings, in: Arithmetic of Higher-Dimensional Algebraic Varieties, Palo Alto, CA, 2002, Progr. Math., vol. 226, Birkhäuser, Basel, 2004, pp. 149-173. | MR 2029868 | Zbl 1077.14046
, ,[11] The density of rational points on cubic surfaces, Acta Arith. 79 (1997) 17-30. | MR 1438113 | Zbl 0863.11021
,[12] The density of rational points on Cayley's cubic surface, in: Proceedings of the Session in Analytic Number Theory and Diophantine Equations, Bonner Math. Schriften, vol. 360, Univ. Bonn, Bonn, 2003. | MR 2075628 | Zbl 1060.11038
,[13] The Riemann Zeta-Function, John Wiley & Sons Inc., New York, 1985. | MR 792089 | Zbl 0556.10026
,[14] The estimation of complete exponential sums, Canad. Math. Bull. 28 (1985) 440-454. | MR 812119 | Zbl 0575.10033
, ,[15] Hauteurs et nombres de Tamagawa sur les variétés de Fano, Duke Math. J. 79 (1995) 101-218. | MR 1340296 | Zbl 0901.14025
,[16] Tamagawa measures on universal torsors and points of bounded height on Fano varieties, Astérisque 251 (1998) 91-258. | MR 1679841 | Zbl 0959.14007
,[17] Introduction to Analytic and Probabilistic Number Theory, translated from the second French ed., Cambridge Studies in Advanced Mathematics, vol. 46, Cambridge Univ. Press, Cambridge, UK, 1995. | MR 1342300 | Zbl 0831.11001
,[18] The Theory of the Riemann Zeta-Function, second ed., revised by D.R. Heath-Brown, Oxford Univ. Press, Oxford, UK, 1986. | MR 882550 | Zbl 0601.10026
,[19] Some extremal functions in Fourier analysis, Bull. Amer. Math. Soc. 12 (1985) 183-216. | MR 776471 | Zbl 0575.42003
,[20] The Hardy-Littlewood Method, Cambridge Tracts in Mathematics, vol. 125, second ed., Cambridge Univ. Press, Cambridge, UK, 1997. | Zbl 0455.10034
,[21] Sur les courbes algébriques et les variétés qui s'en déduisent, Pub. Inst. Math. Strasbourg 7 (1948) 1-85. | MR 27151 | Zbl 0036.16001
,