@article{ASENS_2006_4_39_6_921_0, author = {Li, Peter and Wang, Jiaping}, title = {Weighted Poincar\'e inequality and rigidity of complete manifolds}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, volume = {39}, year = {2006}, pages = {921-982}, doi = {10.1016/j.ansens.2006.11.001}, mrnumber = {2316978}, zbl = {05149414}, language = {en}, url = {http://dml.mathdoc.fr/item/ASENS_2006_4_39_6_921_0} }
Li, Peter; Wang, Jiaping. Weighted Poincaré inequality and rigidity of complete manifolds. Annales scientifiques de l'École Normale Supérieure, Tome 39 (2006) pp. 921-982. doi : 10.1016/j.ansens.2006.11.001. http://gdmltest.u-ga.fr/item/ASENS_2006_4_39_6_921_0/
[1] Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations: Bounds on Eigenfunctions of N-Body Schrödinger Operators, Mathematical Notes, vol. 29, Princeton University Press, Princeton, NJ, 1982. | MR 745286 | Zbl 0503.35001
,[2] Boundaries of zero scalar curvature in the ADS/CFT correspondence, Adv. Theor. Math. Phys. 3 (1999) 1769-1783. | MR 1812136 | Zbl 0978.53084
, ,[3] The structure of stable minimal hypersurfaces in , Math. Res. Lett. 4 (1997) 637-644. | MR 1484695 | Zbl 0906.53004
, , ,[4] Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. 28 (1975) 333-354. | MR 385749 | Zbl 0312.53031
, ,[5] The uncertainty principle and sharp Gårding inequalities, Comm. Pure Appl. Math. 34 (1981) 285-331. | MR 611747 | Zbl 0458.35099
, ,[6] Lower bounds for Schrödinger equations, in: Conference on Partial Differential Equations (Saint Jean de Monts, 1982), Conf. No. 7, Soc. Math. France, Paris, 1982, 7 pp. | Numdam | MR 672274 | Zbl 0492.35057
, ,[7] Lecture Notes on Geometric Analysis, Lecture Notes Series, vol. 6, Research Institute of Mathematics and Global Analysis Research Center, Seoul National University, Seoul, 1993. | MR 1320504 | Zbl 0822.58001
,[8] Curvature and function theory on Riemannian manifolds, in: Surveys in Differential Geometry: Papers Dedicated to Atiyah, Bott, Hirzebruch, and Singer, vol. VII, International Press, Cambridge, 2000, pp. 375-432. | MR 1919432 | Zbl 1066.53084
,[9] Complete surfaces with finite total curvature, J. Diff. Geom. 33 (1991) 139-168. | MR 1085138 | Zbl 0749.53025
, ,[10] Harmonic functions and the structure of complete manifolds, J. Diff. Geom. 35 (1992) 359-383. | MR 1158340 | Zbl 0768.53018
, ,[11] Complete manifolds with positive spectrum, J. Diff. Geom. 58 (2001) 501-534. | MR 1906784 | Zbl 1032.58016
, ,[12] Complete manifolds with positive spectrum, II, J. Diff. Geom. 62 (2002) 143-162. | MR 1987380 | Zbl 1073.58023
, ,[13] Comparison theorem for Kähler manifolds and positivity of spectrum, J. Diff. Geom. 69 (2005) 43-74. | MR 2169582 | Zbl 1087.53067
, ,[14] On Evans potential, Proc. Japan Acad. 38 (1962) 624-629. | MR 150296 | Zbl 0197.08604
,[15] Structure theorems for complete Kähler manifolds and applications to Lefschetz type theorems, Geom. Funct. Anal. 5 (1995) 809-851. | MR 1354291 | Zbl 0860.53045
, ,[16] Harmonic maps and the topology of stable hypersurfaces and manifolds with non-negative Ricci curvature, Comm. Math. Helv. 39 (1981) 333-341. | MR 438388 | Zbl 0361.53040
, ,[17] Conformally flat manifolds, Kleinian groups and scalar curvature, Invent. Math. 92 (1988) 47-71. | MR 931204 | Zbl 0658.53038
, ,[18] Potential theory and diffusion on Riemannian manifolds, in: Conference on Harmonic Analysis in Honor of Antoni Zygmund, vols. I, II, Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983, pp. 821-837. | MR 730112 | Zbl 0558.31009
,[19] On conformally compact Einstein manifolds, Math. Res. Lett. 8 (2001) 671-688. | MR 1879811 | Zbl 1053.53030
,[20] Connectness of the boundary in the ADS.CFT correspondence, Adv. Theor. Math. Phys. 3 (1999) 1635-1655. | MR 1812133 | Zbl 0978.53085
, ,[21] Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975) 201-228. | MR 431040 | Zbl 0291.31002
,[22] Some function-theoretic properties of complete Riemannian manifold and their applications to geometry, Indiana Univ. Math. J. 25 (1976) 659-670. | MR 417452 | Zbl 0335.53041
,