@article{ASENS_2006_4_39_1_75_0, author = {Gu\`es, C. M. I. Olivier and M\'etivier, Guy and Williams, Mark and Zumbrun, Kevin}, title = {Navier-Stokes regularization of multidimensional Euler shocks}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, volume = {39}, year = {2006}, pages = {75-175}, doi = {10.1016/j.ansens.2005.12.002}, zbl = {05037727}, language = {en}, url = {http://dml.mathdoc.fr/item/ASENS_2006_4_39_1_75_0} }
Guès, C. M. I. Olivier; Métivier, Guy; Williams, Mark; Zumbrun, Kevin. Navier-Stokes regularization of multidimensional Euler shocks. Annales scientifiques de l'École Normale Supérieure, Tome 39 (2006) pp. 75-175. doi : 10.1016/j.ansens.2005.12.002. http://gdmltest.u-ga.fr/item/ASENS_2006_4_39_1_75_0/
[1] Existence d'ondes de raréfaction pour des sytèmes quasi-linéaires hyperboliques multidimensionnels, Comm. Partial Differential Equations 14 (1989) 173-230. | MR 976971 | Zbl 0692.35063
,[2] Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup. Paris 14 (1981) 209-246. | Numdam | MR 631751 | Zbl 0495.35024
,[3] Stability and Asymptotic Behavior of Differential Equations, D.C. Heath, Boston, 1965. | MR 190463 | Zbl 0154.09301
,[4] Introduction to the Theory of Linear Partial Differential Equations, North-Holland, Amsterdam, 1982. | MR 678605 | Zbl 0487.35002
, ,[5] Stability of step shocks, Phys. Fluids 5 (1962) 1181-1187. | MR 155515 | Zbl 0111.38403
,[6] Spectral stability of small shock waves, Arch. Rat. Mech. Anal. 164 (2002) 287-309. | MR 1933630 | Zbl 1018.35010
, ,[7] The gap lemma and geometric criteria instability of viscous shock profiles, CPAM 51 (1998) 797-855. | MR 1617251 | Zbl 0933.35136
, ,[8] The existence and limit behavior of the one-dimensional shock layer, Amer. J. Math. 73 (1951) 256-274. | MR 44315 | Zbl 0044.21504
,[9] Développements asymptotiques de solutions exactes de systèmes hyperboliques quasilinéaires, Asymp. Anal. 6 (1993) 241-270. | MR 1201195 | Zbl 0780.35017
,[10] Multidimensional viscous shocks I: degenerate symmetrizers and long time stability, J. Amer. Math. Soc. 18 (2005) 61-120. | MR 2114817 | Zbl 1058.35163
, , , ,[11] Multidimensional viscous shocks II: the small viscosity problem, Comm. Pure Appl. Math. 57 (2004) 141-218. | MR 2012648 | Zbl 1073.35162
, , , ,[12] Existence and stability of multidimensional shock fronts in the vanishing viscosity limit, Arch. Rat. Mech. Anal. 175 (2004) 151-244. | MR 2118476 | Zbl 1072.35122
, , , ,[13] Guès O., Métivier G., Williams M., Zumbrun K., Stability of noncharacteristic boundary layers for the compressible Navier-Stokes and MHD equations, in preparation.
[14] Guès O., Métivier G., Williams M., Zumbrun K., Viscous boundary value problems for symmetric systems with variable multiplicities, in preparation.
[15] Nonlinear asymptotic stability of viscous shock profiles for conservation laws, Arch. Rat. Mech. Anal. 95 (1986) 325-344. | MR 853782 | Zbl 0631.35058
,[16] Viscous limits for piecewise smooth solutions to systems of conservation laws, Arch. Rat. Mech. Anal. 121 (1992) 235-265. | MR 1188982 | Zbl 0792.35115
, ,[17] Curved shocks as viscous limits: a boundary problem approach, Indiana Univ. Math. J. 51 (2002) 421-450. | MR 1909296 | Zbl 1046.35072
, ,[18] The Analysis of Linear Partial Differential Operators I, Springer, Berlin, 1983. | Zbl 1028.35001
,[19] Initial boundary value problems for hyperbolic systems, Comm. Pure Appl. Math. 23 (1970) 277-298. | MR 437941 | Zbl 0193.06902
,[20] Perturbation Theory for Linear Operators, Springer, Berlin, 1985. | MR 1335452 | Zbl 0148.12601
,[21] Kawashima S., Systems of hyperbolic-parabolic type with applications to the equations of magnetohydrodynamics, PhD thesis, Kyoto University, 1983.
[22] Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation, Hokkaido Math. J. 14 (1985) 249-275. | MR 798756 | Zbl 0587.35046
, ,[23] On the normal form of the symmetric hyperbolic-parabolic systems associated with the conservation laws, Tohoku Math. J. (1988) 449-464. | MR 957056 | Zbl 0699.35171
, ,[24] Pointwise Green function bounds for shock profiles with degenerate viscosity, Arch. Rat. Mech. Anal. 169 (2003) 177-263. | MR 2004135 | Zbl 1035.35074
, ,[25] Stable viscosity matrices for systems of conservation laws, J. Differential Equations 56 (1985) 229-262. | MR 774165 | Zbl 0512.76067
, ,[26] The Stability of Multidimensional Shock Fronts, Mem. Amer. Math. Soc., vol. 275, AMS, Providence, RI, 1983. | MR 683422 | Zbl 0506.76075
,[27] The Existence of Multidimensional Shock Fronts, Mem. Amer. Math. Soc., vol. 281, AMS, Providence, RI, 1983. | MR 699241 | Zbl 0517.76068
,[28] Stability of Multidimensional Shocks, in: Advances in the Theory of Shock Waves, Progress in Nonlinear PDE, vol. 47, Birkhäuser, Boston, 2001. | MR 1842775 | Zbl 1017.35075
,[29] The block structure condition for symmetric hyperbolic systems, Bull. Lond. Math. Soc. 32 (2000) 689-702. | MR 1781581 | Zbl 1073.35525
,[30] Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems, Mem. Amer. Math. Soc. 175 (826) (2005), vi+107 p. | MR 2130346 | Zbl 1074.35066
, ,[31] Symmetrizers and continuity of stable subspaces for parabolic-hyperbolic boundary value problems, Disc. Cont. Dyn. Syst. 11 (2004) 205-220. | MR 2073953 | Zbl 1102.35332
, ,[32] Hyperbolic boundary value problems for symmetric systems with variable multiplicities, J. Differential Equations 211 (2005) 61-134. | MR 2121110 | Zbl 1073.35155
, ,[33] Stable viscosities and shock profiles for systems of conservation laws, Trans. Amer. Math. Soc. 282 (1984) 749-763. | MR 732117 | Zbl 0512.76068
,[34] An Evans function approach to spectral stability of small-amplitude shock profiles, J. Disc. Cont. Dyn. Syst. 10 (2004) 885-924. | MR 2073940 | Zbl 1058.35164
, ,[35] The Topology of Fibre Bundles, Princeton University Press, Princeton, NJ, 1951. | MR 39258 | Zbl 0054.07103
,[36] Multidimensional stability of planar viscous shock waves, in: Advances in the Theory of Shock Waves, Progress in Nonlinear PDE, vol. 47, Birkhäuser, Boston, 2001, pp. 304-516. | MR 1842778 | Zbl 0989.35089
,[37] Stability of large-amplitude shock waves of compressible Navier-Stokes equations, with an appendix by H.K. Jenssen and G. Lyng, in: Handbook of Mathematical Fluid Dynamics, vol. 3, North-Holland, Amsterdam, 2004, pp. 311-533. | MR 2099037 | Zbl pre05177023
,[38] Zumbrun K., Planar stability criteria for viscous shock waves of systems with real viscosity, in: Hyperbolic Systems of Balance Laws, Springer Lecture Notes, 2006, in press.
[39] Viscous and inviscid stability of multidimensional planar shock fronts, Indiana Univ. Math. J. 48 (1999) 937-992. | MR 1736972 | Zbl 0944.76027
, ,