Pincement sur le spectre et le volume en courbure de Ricci positive
Aubry, Erwann
Annales scientifiques de l'École Normale Supérieure, Tome 38 (2005), p. 387-405 / Harvested from Numdam
@article{ASENS_2005_4_38_3_387_0,
     author = {Aubry, Erwann},
     title = {Pincement sur le spectre et le volume en courbure de Ricci positive},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     volume = {38},
     year = {2005},
     pages = {387-405},
     doi = {10.1016/j.ansens.2005.01.002},
     mrnumber = {2166339},
     zbl = {1085.53024},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/ASENS_2005_4_38_3_387_0}
}
Aubry, Erwann. Pincement sur le spectre et le volume en courbure de Ricci positive. Annales scientifiques de l'École Normale Supérieure, Tome 38 (2005) pp. 387-405. doi : 10.1016/j.ansens.2005.01.002. http://gdmltest.u-ga.fr/item/ASENS_2005_4_38_3_387_0/

[1] Anderson M., Metrics of positive Ricci curvature with large diameter, Manuscripta Math. 68 (1990) 405-415. | MR 1068264 | Zbl 0711.53036

[2] Aubry E., Théorème de la Sphère, Séminaire de Théorie Spectrale et Géométrie, Grenoble 18 (2000) 125-155. | Numdam | MR 1812217 | Zbl 1078.53518

[3] Aubry E., Variétés de courbure de Ricci presque minorée : inégalités géométriques optimales et stabilité des variétés extrémales, Thèse, Institut Fourier, Grenoble, 2003.

[4] Bertrand J., Pincement spectral en courbure de Ricci positive, Prépublications de l'École polytechnique, no 2003-13.

[5] Bredon G., Introduction to Compact Transformation Groups, Pure Appl. Math., vol. 46, Academic Press, New York, 1972. | MR 413144 | Zbl 0246.57017

[6] Cheeger J., Colding T., On the structure of spaces with Ricci curvature bounded below. I, J. Differential Geom. 46 (1997) 406-480. | MR 1484888 | Zbl 0902.53034

[7] Cheeger J., Colding T., On the structure of spaces with Ricci curvature bounded below. III, J. Differential Geom. 52 (1999) 37-74. | MR 1815411 | Zbl 1027.53043

[8] Colding T., Shape of manifolds with positive Ricci curvature, Invent. Math. 124 (1996) 175-191. | MR 1369414 | Zbl 0871.53027

[9] Colding T., Large manifolds with positive Ricci curvature, Invent. Math. 124 (1996) 193-214. | MR 1369415 | Zbl 0871.53028

[10] Croke C., An eigenvalue pinching theorem, Invent. Math. 68 (1982) 253-256. | MR 666162 | Zbl 0505.53018

[11] Gallot S., Courbure de Ricci et convergence des variétés, in: Colding T.H., Cheeger-Colding (Eds.), Séminaire Bourbakih, Nov. 1997 (exposé no 835), Astérisque, vol. 252, 1998, pp. 7-32. | Numdam | MR 1685585 | Zbl 0976.53038

[12] Gromov M., Metric Structures for Riemannian and Non-Riemannian Spaces, Progr. Math., vol. 152, Birkhäuser, Boston, 1999. | MR 1699320 | Zbl 0953.53002

[13] Ikeda A., On the spectrum of a Riemannian manifold of positive constant curvature, Osaka J. Math. 17 (1980) 75-93. | MR 558320 | Zbl 0436.58025

[14] Ilias S., Constantes explicites pour les inégalités de Sobolev sur les variétés riemanniennes compactes, Ann. Inst. Fourier 33 (1983) 151-165. | Numdam | MR 699492 | Zbl 0528.53040

[15] Otsu Y., On manifolds of positive Ricci curvature with large diameter, Math. Z. 206 (1991) 252-264. | MR 1091941 | Zbl 0697.53042

[16] Petersen P., On eigenvalue pinching in positive Ricci curvature, Invent. Math. 138 (1999) 1-21. | MR 1714334 | Zbl 0988.53011

[17] Petersen P., On eigenvalue pinching in positive Ricci curvature, Erratum, Invent. Math. 155 (2004) 223. | MR 2025305

[18] Perelman G., Manifold of positive Ricci curvature with almost maximal volume, J. Amer. Math. Soc. 7 (1994) 299-305. | MR 1231690 | Zbl 0799.53050

[19] Ruh E., Curvature and differentiable structure on spheres, Bull. Amer. Math. Soc. 77 (1971) 148-150. | MR 270307 | Zbl 0206.50704

[20] Sakai T., Riemannian Geometry, American Mathematical Society, Providence, RI, 1996. | MR 1390760 | Zbl 0886.53002

[21] Wolf J.A., Spaces of Constant Curvature, Publish or Perish, Wilmington, DE, 1984. | MR 928600 | Zbl 0281.53034

[22] Yamaguchi T., Lipschitz convergence of manifolds of positive Ricci curvature with large volume, Math. Ann. 284 (1989) 423-436. | MR 1001711 | Zbl 0653.53025