Groupes fondamentaux motiviques de Tate mixte
Deligne, Pierre ; Goncharov, Alexander B.
Annales scientifiques de l'École Normale Supérieure, Tome 38 (2005), p. 1-56 / Harvested from Numdam
@article{ASENS_2005_4_38_1_1_0,
     author = {Deligne, Pierre and Goncharov, Alexander B.},
     title = {Groupes fondamentaux motiviques de Tate mixte},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     volume = {38},
     year = {2005},
     pages = {1-56},
     doi = {10.1016/j.ansens.2004.11.001},
     mrnumber = {2136480},
     zbl = {1084.14024},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/ASENS_2005_4_38_1_1_0}
}
Deligne, Pierre; Goncharov, Alexander B. Groupes fondamentaux motiviques de Tate mixte. Annales scientifiques de l'École Normale Supérieure, Tome 38 (2005) pp. 1-56. doi : 10.1016/j.ansens.2004.11.001. http://gdmltest.u-ga.fr/item/ASENS_2005_4_38_1_1_0/

[1] Bass H., Generators and relations for cyclotomic units, Nagoya Math. J. 27 (1966) 401-407. | MR 201414 | Zbl 0144.29403

[2] Beilinson A., Higher regulators and values of L-functions, Sovremennye Problemy Matematiki 24 (1984) 181-238, (en russe). | MR 760999 | Zbl 0588.14013

[3] Beilinson A., Bernstein J., Deligne P., Faisceaux pervers, in: Analyse et topologie sur les espaces singuliers, Astérisque, vol. 100, SMF, 1982. | MR 751966 | Zbl 0536.14011

[4] Bloch S., Algebraic cycles and algebraic K-theory, Adv. in Math. 61 (3) (1986) 267-304. | MR 852815 | Zbl 0608.14004

[5] Bloch S., The moving lemma for higher Chow groups, J. Algebraic Geom. 3 (3) (1994) 537-568. | MR 1269719 | Zbl 0830.14003

[6] Borel A., Stable real cohomology of arithmetic groups, Ann. Sci. Éc. Nom. Sup. 7 (1974) 235-272. | Numdam | MR 387496 | Zbl 0316.57026

[7] Borel A., Cohomologie de SL n et valeurs de fonctions zêta aux points entiers, Ann. Scuola Normale Superiore 4 (1977) 613-636. | Numdam | MR 506168 | Zbl 0382.57027

[8] Buchsbaum A., Satellites and exact functors, Ann. of Math. 71 (2) (1960) 199-209. | MR 112905 | Zbl 0095.16505

[9] Chen K.T., Iterated integrals of differential forms and loop space homology, Ann. of Math. 97 (1973) 217-246. | MR 380859 | Zbl 0227.58003

[10] Chen K.T., Reduced Bar Constructions on de Rham complexes, in: Algebra, Topology and Category Theory, a collection of papers in honor of Samuel Eilenberg, Academic Press, 1976, pp. 19-32. | MR 413151 | Zbl 0341.57034

[11] Deligne P., Le groupe fondamental de la droite projective moins trois points, in: Galois Groups over Q, MSRI Publ., vol. 16, Springer-Verlag, 1989, pp. 79-313. | MR 1012168 | Zbl 0742.14022

[12] Deligne P., Catégories tannakiennes, in: Grothendieck Festschrift, vol. 2, Progress in Math., vol. 87, Birkhäuser, 1990, pp. 111-195. | MR 1106898 | Zbl 0727.14010

[13] Deligne P., Morgan J., Notes on supersymmetry, in: Quantum Fields and Strings : A Course for Mathematicians, vol. 1, AMS, 1999. | MR 1701597 | Zbl 01735158

[14] Demazure M., Gabriel P., Groupes algébriques, Masson, 1970.

[15] Goncharov A.B., Polylogarithms in arithmetic and geometry, in: Proc. ICM Zurich, Birkhäuser, 1994, pp. 374-387. | MR 1403938 | Zbl 0849.11087

[16] Goncharov A.B., The dihedral Lie algebras and Galois symmetries of π 1 (P 1 -{0,}μ N ), Duke Math. J. 110 (3) (2001) 397-487. | MR 1869113 | Zbl 01820861

[17] Hain R., Matsumoto M., Weighted completion of Galois groups and Galois actions on the fundamental group of P 1 -{0,1,}, Compositio Math. 139 (2) (2003) 119-167. | MR 2025807 | Zbl 1072.14021

[18] Hain R., Zucker S., Unipotent variations of mixed Hodge structure, Inv. Math. 88 (1987) 83-124. | MR 877008 | Zbl 0622.14007

[19] Hanamura M., Mixed motives and algebraic cycles I, Math. Res. Lett. 2 (6) (1995) 811-821, See also II, Inv. Math. 158 (1) (2004) 105-179. | MR 1362972 | Zbl 0867.14003

[20] Huber A., Mixed Motives and their Realization in Derived Categories, Lecture Notes in Math., vol. 1604, Springer-Verlag, 1995. | MR 1439046 | Zbl 0938.14008

[21] Huber A., Realization of Voevodsky's motives, J. Algebraic Geom. 9 (2000) 755-799, Corrigendum, Ibid. 13 (1) (2004) 195-207. | MR 2008720 | Zbl 1058.14033

[22] Jannsen U., Mixed Motives and Algebraic K-Theory, Lecture Notes in Math., vol. 1400, Springer-Verlag, 1990. | MR 1043451 | Zbl 0691.14001

[23] Kubert D., The universal ordinary distribution, Bull. SMF 107 (1979) 79-202. | Numdam | MR 545171 | Zbl 0409.12021

[24] Levine M., Tate motives and the vanishing conjectures for algebraic K-theory, in: Algebraic K-Theory and Algebraic Topology, Lake Louise, 1991, NATO Adv. Sci. Inst. Ser. C Math. Phys., vol. 407, Kluwer, 1993, pp. 167-188. | MR 1367296 | Zbl 0885.19001

[25] Levine M., Bloch's higher Chow groups revisited, in: K-theory, Strasbourg, 1992, Astérisque, vol. 226, SMF, 1994, pp. 235-320. | MR 1317122 | Zbl 0817.19004

[26] Levine M., Mixed Motives, Math. Surveys and Monographs, vol. 57, AMS, 1998. | MR 1623774 | Zbl 0902.14003

[27] Racinet G., Doubles mélanges des polylogarithmes multiples aux racines de l'unité, Publ. Math. IHÉS 95 (2002) 185-231. | Numdam | MR 1953193 | Zbl 1050.11066

[28] Rapoport M., Comparison of the regulators of Beilinson and of Borel, in: Beilinson's Conjectures on Special Values of L-Functions, Perspectives in Math., vol. 4, Academic Press, 1988, pp. 169-192. | MR 944994 | Zbl 0667.14005

[29] Reutenauer C., Free Lie Algebras, LMS Monographs New Ser., vol. 7, Oxford University Press, 1993. | MR 1231799 | Zbl 0798.17001

[30] Schneider P., Introduction to the Beilinson conjectures, in: Beilinson's Conjectures on Special Values of L-Functions, Perspectives in Math., vol. 4, Academic Press, 1988, pp. 1-35. | MR 944989 | Zbl 0673.14007

[31] Terasoma T., Multiple zeta values and mixed Tate motives, Inv. Math. 149 (2) (2002) 339-369. | MR 1918675 | Zbl 1042.11043

[32] Voevodsky V., Triangulated categories of motives over a field, in: Cycles, Transfer and Motivic Homology Theories, Ann. of Math. Studies, vol. 143, Princeton University Press, 2000, pp. 188-238. | MR 1764202 | Zbl 1019.14009

[33] Washington L.C., Introduction to cyclotomic fields, Graduate Texts in Math., vol. 81, Springer-Verlag, 1997. | MR 1421575 | Zbl 0484.12001

[34] Wojtkowiak Z., Cosimplicial objects in algebraic geometry, in: Algebraic K-Theory and Algebraic Topology, Lake Louise, 1991, NATO Adv. Sci. but. Ser. C Math. Phys., vol. 407, Kluwer, 1993, pp. 287-327. | MR 1367304 | Zbl 0916.14006