@article{ASENS_2003_4_36_2_213_0, author = {Abdenur, Flavio}, title = {Generic robustness of spectral decompositions}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, volume = {36}, year = {2003}, pages = {213-224}, doi = {10.1016/S0012-9593(03)00008-9}, mrnumber = {1980311}, zbl = {1027.37010}, language = {en}, url = {http://dml.mathdoc.fr/item/ASENS_2003_4_36_2_213_0} }
Abdenur, Flavio. Generic robustness of spectral decompositions. Annales scientifiques de l'École Normale Supérieure, Tome 36 (2003) pp. 213-224. doi : 10.1016/S0012-9593(03)00008-9. http://gdmltest.u-ga.fr/item/ASENS_2003_4_36_2_213_0/
[1] Abdenur F., Attractors of generic diffeomorphisms are persistent, preprint IMPA, 2001. | MR 1950789
[2] Persistence of transitive diffeomorphisms, Ann. Math. 143 (1995) 367-396. | MR 1381990 | Zbl 0852.58066
, ,[3] Connexions hétéroclines et généricité d'une infinité de puits ou de sources, Ann. Scient. Éc. Norm. Sup. Paris 32 (1999) 135-150. | Numdam | MR 1670524 | Zbl 0944.37012
, ,[4] Bonatti Ch., Diaz L.J., On maximal transitive sets of generic diffeomorphisms, preprint PUC-Rio, 2001.
[5] Bonatti Ch., Diaz L.J., Pujals E., A C1-generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources, Ann. Math., to appear. | MR 2018925 | Zbl 1049.37011
[6] Bonatti Ch., Diaz L.J., Pujals E., Rocha J., Robustly transitive sets and heterodimensional cycles, Astérisque, to appear. | MR 2052302 | Zbl 1056.37024
[7] SRB measures for partially hyperbolic systems whose central direction is mostly contracting, Israel J. Math. 115 (2000) 157-193. | MR 1749677 | Zbl 0996.37033
, ,[8] Carballo C.M., Morales C.A., Homoclinic classes and finitude of attractors for vector fields on n-manifolds, preprint, 2001. | MR 1934436
[9] Carballo C.M., Morales C.A., Pacifico M.J., Homoclinic classes for generic C1 vector fields, Ergodic Theory Dynam. Systems, to appear. | MR 1972228 | Zbl 1047.37009
[10] Partial hyperbolicity and robust transitivity, Acta Math. 183 (1999) 1-43. | MR 1719547 | Zbl 0987.37020
, , ,[11] Necessary conditions for stability of diffeomorphisms, Trans. AMS 158 (1971) 301-308. | MR 283812 | Zbl 0219.58005
,[12] Diffeomorphisms in I1(M) satisfy Axiom A, Ergodic Theory Dynam. Systems 12 (1992) 233-253. | MR 1176621 | Zbl 0760.58035
,[13] Connecting invariant manifolds and the solution of the C1 stability and Ω-stability conjectures for flows, Ann. Math. 145 (1997) 81-137. | Zbl 0871.58067
,[14] General Topology, New York, Springer, 1955. | MR 70144 | Zbl 0306.54002
,[15] Contributions to the C1-stability conjecture, Topology 17 (1978) 386-396. | MR 516217 | Zbl 0405.58035
,[16] An ergodic closing lemma, Ann. Math. 116 (1982) 503-540. | MR 678479 | Zbl 0511.58029
,[17] A global view of dynamics and a conjecture on the denseness of finitude of atttractors, Astérisque 261 (2000) 335-347. | MR 1755446 | Zbl 1044.37014
,[18] An improved closing lemma and a general density theorem, Amer. J. Math. 89 (1967) 1010-1021. | MR 226670 | Zbl 0167.21804
,[19] Homoclinic tangencies and hyperbolicity for surface diffeomorphisms: a conjecture of Palis, Ann. Math. 151 (2000) 961-1023. | MR 1779562 | Zbl 0959.37040
, ,[20] Hyperbolicity and Sensitive-Chaotic Dynamics at Homoclinic Bifurcations, Cambridge Univ. Press, 1993. | MR 1237641 | Zbl 0790.58014
, ,[21] Global Stability of Dynamical Systems, Springer-Verlag, New York, 1986. | MR 869255 | Zbl 0606.58003
,