On spin and modularity in conformal field theory
Kriz, Igor
Annales scientifiques de l'École Normale Supérieure, Tome 36 (2003), p. 57-112 / Harvested from Numdam
@article{ASENS_2003_4_36_1_57_0,
     author = {Kriz, Igor},
     title = {On spin and modularity in conformal field theory},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     volume = {36},
     year = {2003},
     pages = {57-112},
     doi = {10.1016/S0012-9593(03)00003-X},
     mrnumber = {1987977},
     zbl = {1028.81050},
     language = {en},
     url = {http://dml.mathdoc.fr/item/ASENS_2003_4_36_1_57_0}
}
Kriz, Igor. On spin and modularity in conformal field theory. Annales scientifiques de l'École Normale Supérieure, Tome 36 (2003) pp. 57-112. doi : 10.1016/S0012-9593(03)00003-X. http://gdmltest.u-ga.fr/item/ASENS_2003_4_36_1_57_0/

[1] Baranov M.A., Schwarz A.S., Multiloop contribution to string theory, Pisma ZhETP 42 (8) (1985) 340, [JETP Lett. 42 (1986) 419]. | MR 875755

[2] Browder W., Surgery on Simply Connected Manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete, 65, Springer-Verlag, 1972. | MR 358813 | Zbl 0239.57016

[3] Deligne P., Le symbole modéré, Inst. Hautes Études Sci. Publ. Math. 73 (1991) 147-181. | Numdam | MR 1114212 | Zbl 0749.14011

[4] Deligne P., Letters to the author, 2000-2001.

[5] Deligne P., Notes on spinors, in: Quantum Fields and Strings: A Course for Mathematicians, Vol. 1, AMS, 1999, pp. 99-136. | MR 1701598 | Zbl 01735166

[6] Deligne P., Mumford D., The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. 36 (1969) 75-108. | Numdam | MR 262240 | Zbl 0181.48803

[7] Di Francesco P., Mathieu P., Senechal D., Conformal Field Theory, Graduate Texts in Contemporary Physics, Springer-Verlag, New York, 1997. | MR 1424041 | Zbl 0869.53052

[8] Dong C., Li H., Mason G., Twisted representations of vertex operator algebras, Math. Ann. 310 (3) (1998) 571-600. | MR 1615132 | Zbl 0890.17029

[9] Frenkel I., Vertex algebras and algebraic curves, http://xxx.arXiv.org/ps/math.QA/0007054. | MR 1849359

[10] Frenkel I., Lepowsky J., Meurman A., Vertex Operator Algebras and the Monster, Pure Appl. Math., 134, Academic Press, Boston, MA, 1988. | MR 996026 | Zbl 0674.17001

[11] Friedan D., Notes on string theory and two dimensional conformal field theory, in: Green M., Gross D. (Eds.), Workshop on Unified String Theories, ITP Santa Barbara, World Scientific, Singapore, 1985, pp. 162. | MR 849106 | Zbl 0648.53057

[12] Friedan D., Martinec E., Shenker S., Conformal invariance, supersymmetry and string theory, Nucl. Phys. B 271 (1986) 93. | MR 845945

[13] Giraud, Cohomologie non abélienne, in: Grundlehren der math. Wissensch., Vol. 179, Springer-Verlag. | Zbl 0226.14011

[14] Huang Y.Z., Two-dimensional Conformal Geometry and Vertex Operator Algebras, Progress in Mathematics, 148, Birkhäuser, 1997. | MR 1448404 | Zbl 0884.17021

[15] Lang S., Elliptic Functions, Graduate Texts in Mathematics, 112, Springer-Verlag, 1987. | MR 890960 | Zbl 0615.14018

[16] Pressley A., Segal G., Loop Groups, Oxford Science Publications, Oxford University Press, 1986. | MR 900587 | Zbl 0618.22011

[17] Luest D., Theisen S., Lectures on String Theory, Lecture Notes in Mathematics Vol. 346, Springer-Verlag. | MR 1028064 | Zbl 0716.53063

[18] Quillen D., Determinants of Cauchy-Riemann operators on Riemann surfaces, Funktsional. Anal. i Prilozhen. 19 (1985) 37-41. | MR 783704 | Zbl 0603.32016

[19] Rabin J.M., Super Riemann Surfaces, in: Yau S.T. (Ed.), Mathematical Aspects of String Theory, Advanced Series in Mathematical Physics, 1, World Scientific, 1987. | MR 915830 | Zbl 0667.58010

[20] Rosly A.A., Schwarz A.S., Voronov A.A., Geometry of superconformal manifolds, Comm. Math. Phys. 119 (1988) 129-152. | MR 968484 | Zbl 0675.58010

[21] Segal G., The definition of conformal field theory, preprint. | MR 2079383

[22] Simon B., Trace Ideals and Their Applications, London Mathematical Society Lecture Note Series, 35, Cambridge University Press, 1979. | MR 541149 | Zbl 0423.47001

[23] Wall C.T.C., Graded Brauer groups, J. Reine Angew. Math. 213 (1963/64) 187-199. | MR 167498 | Zbl 0125.01904